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Abstract
The dynamics of squeeze-out of thin liquid films between two solids is perhaps
the most central topic in tribology. It is directly relevant for wear and indirectly
involved in many other important processes, e.g., adhesion and friction. In
this review we present a broad overview of the basic principles of squeeze-out,
and present a number of applications to adhesion, friction and wear. We first
describe the squeezing of ‘thick’ liquid films (thickness larger than ∼100 Å),
which can be described using the Navier–Stokes equations of hydrodynamics,
and present experimental illustrations for soft solids (rubber) and hard solids
(mica). Next we consider molecularly thin liquid films. Here the squeeze-out
occurs in a quantized manner involving a monolayer at each step. We discuss
the nature of the nucleation of n → n − 1 monolayer squeeze-out, where
n is the number of trapped monolayers. We consider in detail the nature of
the spreading which follows the nucleation and show that the boundary line
may exhibit instabilities. Sometimes the squeeze-out is incomplete, resulting
in trapped islands. These islands may be pinned, or else they drift slowly to
the periphery of the contact area where they get squeezed out through narrow
liquid channels. We consider also dewetting at soft interfaces and present
an application to the adhesion of soft objects on wet substrates. Finally, we
present molecular dynamics and kinetic Monte Carlo simulation results on
various aspects of squeeze-out for liquid-like and solid-like lubrication films,
and discuss the implications for wear.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Tribology, the science of interacting solid surfaces in relative motion, is one of the oldest
problems in physics, and has undoubtedly a huge practical importance [1–4]. In recent years,
the ability to produce durable low friction surfaces and lubricants has become an important
factor in the miniaturization of moving components in technologically advanced devices. For
such applications, the interest is focused on the stability under pressure of thin lubricant films,
since the complete squeeze-out of the lubricant from an interface may give rise to cold-welded
junctions, resulting in high friction and catastrophically large wear.

Consider the following generic situation: an elastic ball squeezed against a rigid flat
substrate in a fluid; see figure 1. As long as the separation between the two solids
is larger than, say, 1000 Å, the fluid squeeze-out can usually be described using the
Navier–Stokes equations of hydrodynamics with classical no-slip boundary conditions. At
this level, specific interactions between liquid and solid are ignored, the solid walls are
assumed to be perfectly smooth and rigid, and the liquid is treated as a structureless
continuum. As the film thickness decreases below ∼1000 Å these assumptions progressively
fail. Initially the solid–liquid interactions, and the surface roughness, mainly affect
the validity of the no-slip boundary condition. Violation of this condition was first
observed in polymer systems [5]. However, more recently experiments also demonstrated
the occurrence of slip in simple liquids [6–10]. Although a final consensus on the
range of slip has yet to be reached, it is now clear that a detailed understanding of
this problem requires a careful consideration of the interplay between surface roughness
and the wall–lubricant interaction, in particular the lateral corrugation of the interaction
potential.
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Figure 1. Squeezing a liquid between an elastic ball and a flat hard substrate. (a) As long as
the separation between the ball and the substrate is large enough, the liquid is squeezed out in
accordance with the standard equations of hydrodynamics. For short ball–substrate separation,
the solid deforms elastically. If the squeezing force F is below some critical value, a thin slab
of lubricant fluid may be trapped between the solid bodies, often resulting in low friction and
negligible wear.

In the present review, we focus on the breakdown of the two remaining approximations
mentioned above, namely the perfect rigidity of the solid walls and—in particular—the contin-
uum description of the liquid. When the separation between the surfaces is decreased to a few
molecular diameters, the motion of the ball may stop with a finite number of molecular layers
of lubricant trapped at the interface. It has been shown both experimentally and theoretically
that when simple fluids (quasi-spherical molecules and linear hydrocarbons) are confined be-
tween atomically flat surfaces at microscopic separations, the behaviour of the lubricant is
mainly determined by the presence of the hard walls, that induce layering in the perpendicular
direction [11–18]. The thinning of the lubrication film under applied pressure occurs step-
wise, by expulsion of individual layers. Figure 2 illustrates the transition from continuous
hydrodynamic behaviour at large separations, to discrete stepwise expulsion within the range
of liquid layering. These layering transitions appear to be thermally activated [19–25]. The
appearance of layering and layering transitions is not restricted to simple molecular liquids.
Rather, it is a very general phenomenon related to the breaking of symmetry at smooth inter-
faces. For instance, layering transitions were also observed in soap films containing various
sorts of colloidal particles, micelles, or even complex networks of polyelectrolytes [26–29].

While layering of the molecules perpendicular to the pore walls is well established
both experimentally and from simulations, much less in known about the in-plane structure.
Attempts to determine the structure using x-ray scattering have so far been limited to rather
larger film thickness (>100 nm) [30, 31] because the scattering signal from just a few
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Figure 2. Variation of the thickness h of a simple film (OMCTS) during a linear increase of the
squeezing force F . Note the transition from a continuous decrease of h at large separation to a
discrete stepwise behaviour (arrows) at small separations [49].

monolayers of material was too weak. However, friction force measurements showed a finite
shear strength along with typical solid-like stick–slip friction in a number of experiments
with simple liquids. This observation was interpreted as a sign of either confinement induced
solidification or confinement induced viscosity enhancement [11, 12, 15–18, 32, 33]. Some of
these observations were subsequently reproduced in numerical simulations. It was also pointed
out that there should be a fundamental difference between simple non-associating liquids and
water. The fact that water expands upon freezing was reported to stabilize the liquid phase under
confinement and under pressure [33–37]. However, it was argued (and in some cases clearly
demonstrated) that trace amounts of contamination either within the liquid [15–18, 33, 35] or
on the surfaces [38–43] may have a tremendous effect on the frictional behaviour. A consistent
picture has yet to emerge. In the present review, we focus on situations where the confined
material behaves in a liquid-like way (sections 3 and 4). Confinement induced solidification
will only be addressed in the context of numerical simulations (section 5).

Although liquid layering has been studied for more than 20 years using the surface
forces apparatus (SFA), the dynamics of squeeze-out was investigated for the first time only
recently [44]. By modifying the conventional SFA set-up [45], it was possible to image
the lateral variation of the gap between the two anvil surfaces as a function of time. These
experiments addressed the n = 1 → 0 transition for a straight chain alcohol. More recently, in
a refined experimental set-up, we were able to image several layering transitions in great
detail [41, 46] for octamethyltetrasiloxane (OMCTS), which is widely used as a model
lubricant.

The basic theory of 2D squeeze-out dynamics of 2D liquid-like lubrication films was
outlined in [19]. Initially the system is trapped in a metastable state at the initial film thickness.
Squeeze-out starts by a thermally activated nucleation process in which a density fluctuation
forms a small hole. Once it has formed, a 2D pressure difference develops between the
boundary line separating the squeezed out region from the rest of the system, and the outer
(roughly circular) boundary line of the contact area, thus driving out the rest of the 2D fluid.

The phenomenology of layering transitions in 2D solid-like boundary lubrication has been
studied in [37, 47, 48]. It has been shown in a series of computer simulations that for solid-like
layers, layering transitions are sometimes initiated by a disordering transition, after which the
lubricant behaves in a liquid-like manner for the rest of the squeeze-out process.

This review is organized as follows. In section 2 we describe the experimental method
which has been used to obtain most of the experimental results discussed in this review.
Section 3 reviews the basic theory of hydrodynamic and elastohydrodynamic squeeze-out,
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and presents experimental results for soft solid walls (rubber) and harder walls (mica sheets).
Section 4 presents an extensive discussion about the squeezing of molecularly thin, 2D liquid-
like films. Experimental and theoretical results are presented both for the nucleation of squeeze-
out and for the squeeze-out dynamics. We also consider the dewetting of soft interfaces and
present applications to adhesion in biological systems, and to hair-care. In section 5 we
consider the squeezing of molecularly thin, 2D solid-like films. This topic is studied using
molecular dynamics as no analytical approach has been presented so far. We consider both
atomic lubricants and hydrocarbons. In section 6 we present experimental results related to
wear, and show how some of the observations can be explained on the basis of the theoretical
results for squeeze-out. The review ends with a summary and an outlook.

2. Experimental considerations

The squeeze-out of liquid from the gap between macroscopic elastic balls and flat walls, as
sketched in figure 1, has been investigated in great detail in classical work on lubrication.
Here, we are interested in the behaviour of lubricant layers with a thickness of only a few
molecular diameters. In order to be able to define the separation between two solid surfaces
with this accuracy, the surfaces must be sufficiently smooth on the lateral scale of the contact
area. Experimentally there are essentially two ways to achieve such a situation. Either one
addresses a situation with an extremely small contact area or one works with single-crystal
surfaces, which are atomically smooth on a macroscopic lateral scale. The former approach
is realized in the atomic force microscope (AFM), the latter in a SFA.

In an AFM, one surface is sharp tip with a typical radius of curvature of a few nanometres.
Due to the sharpness of the tip, the opposing sample surface needs to be flat only on a lateral
scale of several nanometres. The sharpness of the tip also implies that the pressure in the contact
area is rather high, typically of the order of GPa. Furthermore, only a relatively small number
of molecules are affected by the geometric confinement. Nevertheless, molecular layering has
been observed in AFM measurements for a variety of simple liquids [50–52]. One goal of
these measurements—beyond studying the geometric arrangement of the molecules—was to
determine the threshold forces required to squeeze out individual liquid layers (see section 4.1
[23–25]). The squeeze-out process of molecular layers itself was too fast to be detected.

More experimental knowledge about confined liquid films stems from measurements using
the SFA. A typical set-up is shown schematically in figure 3. The key part is two atomically
smooth mica sheets glued to cylindrical lenses (radius of curvature ∼1 cm) with their axes
perpendicular to each other. Upon bringing the cylindrical lenses together, the two opposing
mica surfaces touch at a well defined single contact point. If the pressure is increased, the
surfaces deform elastically. This gives rise to a contact area with a diameter ranging from a
few micrometres to several tens of micrometres, depending on the pressure and the effective
elasticity of the substrate (mica plus underlying glue). Mica surfaces can be prepared to be
atomically smooth on this and in fact even on much larger lateral scales. If the surfaces are
pressed together in a liquid environment, a thin film is typically trapped between them. In
order to permit the measurement of the thickness of this layer, the backs of the mica substrates
are coated with silver layers. The two mirrors form a Fabry–Perot interferometer, which
allows an interferometric measurement of the liquid film thickness with a resolution of the
order of 1 Å. Since one of the mica surfaces is mounted on a cantilever spring, one can record
force–distance curves, as in atomic force microscopy (see figure 2). Since the force between
two crossed cylinders (in the absence of significant elastic deformation) is proportional to the
interaction energy per unit area of two planar substrates, these measurements have been used
extensively to study the equilibrium properties of confined liquid films [11].
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Figure 3. The schematic set-up of a surface forces apparatus (SFA) consisting of two cylindrical
lenses mounted in crossed cylinder geometry inside a sealed container. The sample liquid fills the
gap between the surfaces. Transmitted intensity is measured with a CCD camera. On the right,
the contact area of the surfaces is shown in a zoomed view. Black: Ag mirrors (thickness about
50 nm); white: mica (thickness about 1 µm); grey: sample liquid (thickness about 1–10 nm).

In order to study non-equilibrium properties, two types of experiment can be performed
with an SFA. The commonest approach is to shear the two substrates with respect to each other
at constant film thickness and to measure the response of the liquid film [12, 15–18, 32, 35].
For the present purposes, we are more interested in experiments of the second type, namely
in drainage. Here one of the surfaces is either pressed toward the other at a finite speed via
a spring, or it is oscillated in the normal direction [53, 54]. In both cases, the hydrodynamic
force between the surfaces is calculated from the response of the liquid film thickness to the
drive. Typically, the results are compared to hydrodynamic calculations [55] similar to the one
presented in the following section. Deviations between the experiments and the hydrodynamic
model arise for instance if the no-slip boundary condition is violated [6–10]. Several problems
are encountered if this technique is to be extended to the thickness range of a few molecular
diameters, which we are interested in here. First, the force measurements average over a
large area. Potential inhomogeneities on the surfaces or irregularities of the surface geometry
may thus disturb the measurement [38–40]. Second, there is currently no theory available to
compare the results to when conventional hydrodynamics breaks down, as the signature of
individual molecular layers emerges in the measurements.

However, the SFA apparatus does not only allow one to measure forces. By a simple
extension of the conventional set-up, it becomes possible to image dynamic processes
in confined liquid films directly instead of inferring their properties from indirect force
measurements [44–46]. Conventionally, the apparatus is illuminated with white light. The
transmitted light is then decomposed into its spectral components with a monochromator. The
wavelength of the transmitted light can be converted into the thickness of the liquid film. With
this procedure one-dimensional thickness profiles of the liquid film and force–distance curves
(see figure 2) can be obtained. If monochromatic light is used to illuminate the apparatus,
the transmitted light can be recorded directly in two dimensions with a video microscope. In
this case, the intensity of the transmitted light contains the film thickness information. The
conversion is performed using standard procedures for thin film interferometry [45]. If the
wavelength of light is chosen on the wing of one of the transmission peaks a thickness resolution
of ≈1 Å is obtained, as in the conventional SFA technique. Depending on the mica thickness
and various other experimental parameters, a change in film thickness of 1 nm typically leads
to a change in transmission of 5–10%. Figure 4 shows the transmitted intensity in the centre of
the contact area as the two surfaces are pressed together with continuously increasing load. A
series of four consecutive layering transitions is clearly seen. Two-dimensional video images
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Figure 4. Transmitted intensity versus time averaged over a small area around the apexes of the
surfaces. The load was increased continuously with time. Each step corresponds to the collapse of
one molecular layer h0 = 0.9 nm (incident wavelength: λ = 499.2 nm). Inset: transmitted intensity
versus wavelength for constant film thickness corresponding to 1 s < t < 2 s, 2 s < t < 10 s
and t > 10 s in the main figure, respectively. Note that the collapse of a monolayer may lead to
a decrease or to an increase in the transmission, depending on whether the incident wavelength is
chosen on the left or on the right wing of the transmission peak.

recorded during the transitions will be presented and discussed below along with the theoretical
description in section 4.2.

3. 3D hydrodynamic squeeze-out

3.1. Basic principles

Consider two solid bodies squeezed against each other in a liquid. In the simplest case, where
the elastic deformations of the bodies can be neglected, and where the liquid behaves as a
Newtonian fluid, the motion of the fluid can be obtained from the Navier–Stokes equations of
hydrodynamics. Assuming an incompressible fluid described by the velocity field v(x, t) and
the pressure field P(x, t) these equations take the form

∇ · v = 0, (1)
∂v
∂ t

+ v · ∇v = − 1

ρ
∇ P + ν∇2v (2)

where ρ is the mass density and ν = µ/ρ the kinematic viscosity of the fluid. In most cases
related to squeezing, the Reynolds number R = v0h/ν � 1, where v0 is some characteristic
velocity and h some characteristic separation between the solid walls. Thus the flow is usually
laminar (no turbulent flow). In most cases, when calculating the flow field, it is possible to
neglect the non-linear term and the time derivative term in (2) to get

∇ P = µ∇2v. (3)

This equation, together with the continuity equation, forms the basis for most calculations
of squeezing when the solids can be considered as rigid objects. A particularly simple and
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Figure 5. A rigid solid plate squeezed against a rigid flat substrate in a liquid.

important case is the squeezing of a rigid circular sheet against a flat substrate; see figure 5. In
this case the thickness of the liquid layer at time t is determined by

1

h2(t)
− 1

h2(0)
= 4tσ0

3µR2
, (4)

where σ0 = F/π R2 is the squeezing pressure. Note that for h(t) � h(0), h(t) ∼ t−1/2. The
pressure distribution in the liquid film is

P = Pext − 3µḣ

h3
(R2 − r2) (5)

where ḣ = dh/dt is the velocity of the plate relative to the substrate, and Pext is the external
pressure. Note that during squeezing ḣ < 0, so that P > Pext for r < R, i.e., the pressure in
the film between the two solids is higher than the surrounding pressure. During separation,
ḣ > 0 and the pressure in the liquid film is below the pressure in the surrounding, which may
lead to cavitation.

3.2. Elastohydrodynamics

Real solids are never perfectly rigid as assumed above. Thus, when two solids are squeezed
together in a liquid, the pressure distribution which develops in the liquid will deform the
solids elastically (or plastically, if the pressure is high enough). The elastic deformation
of the solid walls will in turn change the flow field in the fluid. Thus to obtain the elastic
deformation of the solid walls and the flow field in the fluid one must simultaneously solve the
Navier–Stokes equations of hydrodynamics and the equations of continuum elastic mechanics.
In addition, when the local pressure becomes high enough, as is usually the case for hard
solids, e.g., in the context of ball bearings and gears, it is necessary to take into account the
pressure dependence of the viscosity, which is usually well approximated by an exponential
form µ = µ0 exp(αP). This is a very complex problem and very few analytical solutions
are known. However, using dimensional arguments one can show that for solid walls with
quadratic surface profiles the solution to the elastohydrodynamic problem described above
depends only on two dimensionless parameters g1 and g2 [1, 56]. Thus, numerical solutions
of contact problems involving spherical and cylindrical geometries have been presented and
fitted to simple analytical expressions involving the parameters g1 and g2.

In this section we present a simple qualitative argument to illustrate how the pressure
distribution in the liquid deforms the solid walls. We focus on an elastically soft spherical
object (e.g., a rubber ball) squeezed against a flat hard substrate in a Newtonian fluid. Since
the ball is elastically soft, the pressure in the fluid will be so small that we can neglect the
pressure dependence of the viscosity.

Consider first the problem of the elastic ball squeezed against the substrate without the
liquid. In this case the ball will deform and a small circular contact area (radius R; see
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Figure 6. (a) Deformation of an elastic sphere squeezed against a flat hard solid in vacuum.
(b) Deformation (snapshot picture) of the elastic sphere squeezed against the flat in a fluid.

figure 6(a)) is formed where the pressure distribution is given by the famous Hertz solution:

PH = P0
3

2

[
1 −

(
r

R

)2]1/2

(6)

where r is the distance from the centre of the circular contact area. Now, consider pushing
together the sphere and the flat in a fluid. We know that the pressure distribution PH(r) will
lead to locally flat surface. If a fluid layer is squeezed between two flat solid surfaces the
pressure distribution is given by (5), i.e.,

P = 2P0

[
1 −

(
r

R

)2]
. (7)

This pressure is larger (by a factor of 4/3) in the centre of the contact area than that which
would result in a locally flat surface. Thus, the elastic sphere tends to deform as indicated in
figure 6(b).

3.3. Experimental results

Here we present two sets of experimental results for elastohydrodynamic squeeze-out. We
consider first liquids between soft solids (rubber), and then a case of intermediate substrate
stiffness involving thin mica sheets. In both cases the pressure developed in the contact region
is so small that the pressure dependence of the fluid viscosity can be neglected.

Soft solids: rubber. In a series of pioneering studies, Roberts and Tabor [57, 58] studied the
squeezing of liquid films between rubber balls and flat hard substrates. The thickness of the
liquid layer was deduced by studying the optical interference pattern from the junction.

As expected from the discussion in section 3.2, during squeezing of the rubber ball against
the substrate in a liquid, the profile of the rubber surface in the contact zone bends upward, and
the rubber–substrate separation is smallest at the periphery of the contact area; see figure 7.
When the thickness of the film is below 400 Å, the surfaces suddenly spring together at various
points leading to adhesive contact over a major part of the contact region. The contact first
occurs at some protrusion (defects) near an edge of the contact zone where the film thickness
is smallest; once a point of contact is established, this pulls the rest of the rubber into contact.
This dewetting transition will be studied in detail in section 4.7.

With a low viscosity fluid such as water as the lubricant, at the stage of film collapse,
surfaces seal together exceedingly quickly and trap small islands of water as shown in figure 8
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Figure 7. Left: interferograms produced as a spherical rubber ball comes into contact with a
lubricated glass plate. The surfaces approach under constant load and squeeze out silicone oil.
Right: thickness profiles which show the formation and collapse with time of a ‘bell’ entrapment
of liquid (λ = 4460 Å). (From [58].)

(left). After a few hours these disappear, and Roberts suggested that this resulted from fluid
flow in a thin (∼15 Å) water layer at the interface. We do not believe that this is the correct
explanation since if a water layer of this thickness were to occur at the interface the sliding
friction would be extremely small. In contrast, the observed friction coefficient (at the sliding
velocity 1 m s−1) is µ ≈ 8, which is huge and nearly the same as for completely dry surfaces
where µ ≈ 10. Thus, perhaps small water channels occur at the interface through which
the fluid is squeezed out. A more likely explanation is a slow drift of the islands toward the
periphery of the contact area, which results from the spatial (Hertzian) pressure distribution in
the contact area; see section 4.4. If instead of distilled water a dilute solution of a negatively
charged soap (sodium dodecyl sulphate (SDS)) is used, a drastically different result ensues; see
figure 8 (right). The surfaces no longer spring together trapping islands of liquid, but instead
remain apart at almost uniform separation of about 200 Å. The film does not collapse with
time. In this case the film is stabilized by electrical double-layer repulsive forces which support
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Figure 8. Interferograms (top) and deduced profiles (bottom) showing the marked difference
between distilled water (left) and water containing 0.01 M SDS. Distilled water becomes trapped
in pockets but the SDS solution forms a thin equilibrium film of about 200 Å uniform thickness.
(From [58].)

-- -- -

-- --- -
+ + +

+ + + + +++

rubber

glass

Figure 9. Water with positive ions (hydrated protons) between a rubber surface and a glass surface
with negatively charged atomic groups. As the water with positive charges is gradually squeezed out
the repulsive Coulomb force between the negatively charged solid surfaces will gradually increase.

the normal load, even when the squeezing pressure in the contact region equals ∼0.1 MPa.
The SDS is absorbed on the rubber surface (see figure 9) with its negative polar end-groups
in the water. The glass itself most probably acquires a negative charge by reaction between
water molecules and the Si=O groups on the glass surface to form HOSi–O−. The two
negatively charged surfaces attract positive ions from the solution establishing a double layer
of charge, resulting in repulsive forces between the surfaces at small wall–wall separation.
One manifestation of this thin liquid layer is its lubrication effects: sliding at 1 m s−1 results
in a friction coefficient of ∼0.001 compared to ∼10 in dry conditions or in distilled water.

Roberts [58] also performed experiments in which positively charged soap was adsorbed
on the rubber surface, the glass remaining negative. In this case the rubber and the glass surface
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snap together (dewetting transition) and the friction is much higher. The possibility of affecting
the adhesion and sliding friction of solids in liquids, by adsorbing molecules with ionic groups
on solid walls, is of great practical use, e.g., for conditioner for hair-care applications (see
section 4.12). The ability to modulate the contact between two soft solid bodies by changing
the ionic composition of the surrounding fluid may also be very important in many biological
processes, and we will give one example in sections 4.8 and 4.9.

Intermediate substrate stiffness: thin mica sheets. Whether a given surface behaves softly
like the rubber ball described in the previous section, or more rigidly, depends on both the
elasticity of the substrate material and on the speed used to squeeze the surfaces together. In
SFA experiments, the effective elasticity of the substrates depends critically on the thickness d
of the intrinsically stiff mica sheets (typically d ≈ 1–3 µm) which reside on a soft glue layer
(thickness: ∼10 µm or more). Figure 10 shows a series of video snapshots of the contact area in
an SFA experiment with particularly thin mica sheets (d ≈ 400 nm on both sides) [46]. The gap
was filled with the model lubricant OMCTS. After equilibrating the surfaces at a separation of a
few micrometres, they were pressed together rapidly by increasing the normal force abruptly.
Within ≈100 ms the surface separation decreased to a few nanometres. Simultaneously,
the elastic mica surfaces were flattened elastically and buckled inward slightly due to the
hydrodynamic pressure (see also [11]). The cross section in figure 11 shows that the lubricant
thickness was reduced to only one monolayer close to the perimeter of the contact area. This
is the region where the lubricant layer ruptured in the following. Between the second and the
fifth images in figure 10, a number of darker spots appear corresponding to direct mica–mica
contact. As the collapse of the lubricant layer progresses, these areas grow and merge. Finally
(last row), a finite amount of liquid is trapped inside the contact area. This nanodroplet shrinks
laterally and becomes brighter, i.e. thicker, while conserving its volume. After a few seconds,
it has transformed into a round droplet. (The fate of this droplet will be discussed below in
section 4.4.) Qualitatively, the equilibrium shape of such nanodroplets is given by the balance
of interfacial and elastic energies [44–46]. In contrast to the comparably thick trapped pockets
discussed in the previous section, the nanodroplets still feel the presence of the oscillatory
interface potential. Therefore, they assume a cylindrical shape with a flat top (figure 12).

4. Squeezing molecularly thin 2D liquid-like films

The basic theory of 2D squeeze-out was developed in [19]. Initially the system is trapped in
a metastable state at the initial film thickness. Squeeze-out starts by a thermally activated
nucleation process in which a density fluctuation forms a small hole, of critical radius
Rc ∼ 10 Å. Once it has formed, a 2D pressure difference �p develops between the boundary
line separating the squeezed out region from the rest of the system, and the outer (roughly
circular) boundary line of the contact area, thus driving out the rest of the 2D fluid.

4.1. Nucleation

It has been shown both theoretically and experimentally that the layering transitions n → n−1
start by a thermal fluctuation opening up a small ‘hole’ in the lubrication film as indicated in
figure 13(a) for the n = 1 → 0 transition. For a wetting liquid, e.g., hydrocarbons on metals
or on metal oxides, the formation of a hole costs wall–lubricant binding energy and also line
energy as a result of unsaturated bonds of the lubricant molecules toward the interior of the
‘hole’. These (positive) energy terms scale as ∼R2 and ∼R, respectively, with the radius R of
the hole. On the other hand, when the hole has been formed, the confining solid walls, which



Topical Review R307

Figure 10. Video snapshots taken during a fast approach. (From left to right: �t = 150 ms
between images; image width ≈100 µm.) The bright ring marks the edge of the contact area.
The intermediate grey level inside the contact area in the first image corresponds to a thickness of
≈1 nm. The darker grey level in the later pictures corresponds to direct mica–mica contact. The
dashed lines in the first and last images indicate the directions of the cross sections in figures 11
and 12. (Adapted from [46].)

Figure 11. A cross section through the first image in figure 10 showing the elastohydrodynamic
deformation of the mica substrates. (From [46].)

are squeezed together with a high pressure P , will relax inward at the hole as illustrated in
figure 13(a). This gives rise to a (negative) relaxation energy which scales as ∼R3 with the
radius of the hole, so that the total free energy is of the form

U(R) = a R + bR2 − cR3, (8)

where a, b and c are positive numbers, with c ∼ P2/E , where E is the elastic modulus of the
solid walls.

Let us prove that the elastic relaxation energy has the form given above. Before the hole
is formed, the stress in the solid at the interface is σ = P , where P is the squeezing pressure.
When the hole has been formed, the stress is reduced to nearly zero in a volume element ∼R3;
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Figure 12. A cross section through the last image in figure 10. Note that the top of the droplet is
flat, in contrast to the case for the much thicker droplets discussed in the previous section (figure 8).
This reflects the range of the oscillatory layering forces. (From [46].)
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Figure 13. (a) The squeeze-out of the last lubricant monolayer from the contact area between two
elastic solids. The squeeze-out is initiated by the formation of a small circular ‘hole’ (critical radius
typically R ≈ 10–15 Å). (b) The free energy U(R) as a function of the radius R of the hole. The
barrier height �E decreases when the applied squeezing pressure P increases.

see figure 14. Thus the change in the elastic energy is

∼
∫

d3x σε ≈ 1

E

∫
d3x σ 2 ≈ P2 R3

E
, (9)

where ε is the strain. This result is identical to the last term in (8).
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Figure 14. When a hole has been formed in the lubrication film, the solid wall relaxes inward
resulting in a reduction in the elastic energy in the system. In the dotted volume element the stress
in the solid is reduced from P to nearly zero.

The function U(R) has the form shown in figure 13(b). As the pressure P increases the
barrier �E decreases, and when the barrier becomes of order 1 eV the system can, due to a
thermal fluctuation, ‘jump’ over the barrier in a macroscopic time period, say 1 s.

Kinetics of film rupture. Since the critical radius Rc is too small, the nucleation stage cannot
be tested using direct optical imaging. However, the value of the nucleation barrier can be
inferred from measurements of the average force that is required to induce the squeeze-out as
a function of the loading rate. Experiments of this kind were performed by Butt et al [23–25]
using atomic force microscopy. These authors used substances consisting of hydrocarbon
chains with a variety of polar head groups. These molecules form self-assembled monolayers
or bilayers if deposited on polar substrates such as mica. Figure 15 shows a typical force versus
distance curve. As the tip is pressed toward the surface, the film resists a finite load until it
yields at some critical force. The mean yield force decreases with decreasing load rate (see
the inset of figure 15). This kind of trend is well known for rate dependent thermally activated
processes. It can be understood on the basis of simple kinetic theory. The probability rate for a
film to rupture at a given pressure P depends on the probability for a thermal fluctuation large
enough to overcome the barrier �E(P):

w = w0e−�E(P)/kBT , (10)

where w0 is rate at which the tip attempts to penetrate the film. If the pressure is increased
at a lower rate, the system spends more time within any finite interval P to P + �P . Hence
the probability of developing a sufficiently large thermal fluctuation for a given value of P is
higher and the film will rupture, on average, at a lower pressure. Inter alia, Butt et al [23–25]
used this dependence to measure the coefficients a and b (cf equation (8)), which include the
line tension and the spreading pressure p0, respectively, for several systems.

4.2. Spreading

Experimental findings. Once a hole of the critical size has been formed, it spreads quickly
across the contact area. While investigations of the nucleation process using optical imaging
techniques are impeded by the small size of the critical radius, spreading can be followed in
detail. In figure 16 we show a series of experimental snapshots recorded during the squeeze-out
of one monolayer of OMCTS (n = 3 → 2), corresponding to �h = 0.95 ± 0.1 nm. In the
first image, the contact area, which is slightly elliptical, displays an intermediate grey level,
corresponding to a film thickness of n = 3. In the second image, a brighter area with n = 2
appears close to the centre of the contact area. This n = 2 area spreads across the contact area
within a few seconds. While it is approximately circular initially, it deforms progressively
as it approaches the edge of the contact area (second row). At this time, some sections of
the boundary line assume a negative curvature (see the black arrows). In the late stage of the
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Figure 15. A typical force curve for a lipid bilayer (DOTAP) in aqueous solution. The inset shows
yield force histograms for two different tip approach rates (0.8 µm s−1 (left peak) and 5.6 µm s−1

(right peak)). (Adapted from [23–25].)

Figure 16. Experimental snapshots of the contact area during the n = 3 → 2 layering transition
(time between subsequent images: 0.1 s; scale bar: 25 µm). The initial grey level corresponds
to a film thickness of n = 3 monolayers, and the brighter final one to n = 2. Black arrows point
to segments of the boundary line with negative curvature formed close to the edge of the contact
zone. The white arrow indicates the direction of time. (Adapted from [46].)

transition, the circular symmetry is completely broken. Similarly to the nucleation process
described above, elastic relaxation of the mica substrates provides the driving force for the
spreading of the n − 1 area. As a result a 2D pressure difference �p develops between the
boundary line separating the squeezed out region from the rest of the system, and the edge of
the contact area, thus driving out the rest of the 2D fluid, as illustrated in figure 17. This driving
force is opposed by frictional dissipation,which is generated as the confined material slides past
the solid substrates. In the following section, we describe the basic theory of squeeze-out of
2D liquid-like lubrication films. As we will see, the dynamics shown in figure 16 is reproduced
by theory, which indicates that the lubricant is indeed in a two-dimensional liquid-like state.

2D hydrodynamics: analytical results. We focus on the evolution of the boundary line
separating the n and n − 1 regions during the layering transition n → n − 1 for 2D liquid-
like films, when the nucleation of the layering transition occurs in the centre of the contact
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P

P

Figure 17. Because of the curvature of the solid walls at the boundary line, the perpendicular
pressure P will give rise to a parallel force component acting on the 2D lubrication film.

area. Since the lubrication film is assumed to be in a 2D liquid-like state, the basic equations of
motion for the lubrication film are the continuity equation and the (generalized) Navier–Stokes
equation for the 2D velocity field v(x, t). Assuming an incompressible 2D fluid [1, 19],

∇ · v = 0, (11)
∂v
∂ t

+ v · ∇v = − 1

mna
∇ p + ν∇2v − η̄v, (12)

where p is the 2D pressure, ν the 2D kinematic viscosity and mna the mass density. The last
term in (12) describes the ‘drag force’ from the solid walls acting on the fluid.

The contact area between the two solid surfaces is taken to have circular shape with
radius R. Assume that the initial nucleation occurs at the centre of the contact. If we neglect
boundary line instability effects (see section 4.3), then by symmetry the interfacial line between
the squeezed and non-squeezed areas has a circular shape of radius r(t). Let p1(r) be the 2D
pressure at the (inner) moving boundary line and p0 the spreading pressure at the (outer)
boundary of the contact (at r = R). From the equations above one can show that [19]

d A (t)

dt
ln

[
A(t)

A0

]
= −4π(p1 − p0)

mnaη̄
, (13)

where the squeezed out area A(t) = πr2 and the total contact area is A0 = π R2. In [19, 22]
we have shown that p1 = p0 + P(r)a, where P(r) is the normal stress acting in the contact
area (we assume radial symmetry) and a is the width of the layer, typically of order 1 nm. If
we assume constant normal stress P0 then p1 = p0 + P0a is position independent, and it is
easy to integrate (13) to get [19]

A(t)

A0

(
ln

[
A(t)

A0

]
− 1

)
= − t

τ
, (14)

where τ is the time for complete squeeze-out:

τ = mnaη̄A0

4π P0a
. (15)

Under most normal circumstances,a Hertzian contact pressure distribution is a much better
approximation, leading to squeeze dynamics in good agreement with experiments [21, 22].
The Hertzian pressure is

P(r) = 3

2
P0

(
1 − r2

R2

)1/2

. (16)

Combining equations (13) and (16) we get [59]

t̃ = 4

3

[√
1 − Ã(ln Ã − 2) + ln

(
1 +

√
1 − Ã

1 −
√

1 − Ã

)
+ 2 − ln 4

]
(17)
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Figure 18. Analytical solutions to the centrosymmetric squeeze problem, for Hertzian normal
stress (continuous curve) and a constant stress profile (dash–dotted curve). (a) Reduced area and
(b) reduced radii (r/R = (A/A0)1/2) of the squeezed circle versus reduced time. (c) and (d) show
the same as (a) and (b) but now with the Hertzian curves scaled such the total squeeze time is the
same as in the constant stress case. (From [59].)

where Ã = A/A0 and t̃ = t/τ .
Figure 18 shows the analytical solutions to the centrosymmetric case both for a Hertzian

squeezing pressure (continuous curve, given by equation (17)) and for a constant pressure
(dash–dotted curve, given by (14)). We show the variation of (a) the squeezed area and (b) the
squeeze radii versus time. It is clearly seen that the Hertzian profile predicts faster squeeze-out
(by roughly 20%), but qualitatively the two solutions are similar.

2D hydrodynamics: computer simulations. If the squeeze-out starts off-centre the symmetry
properties assumed above are no longer valid, and one has to turn to numerical calculations.
We have shown [21, 22] that the equations of motion can be transformed to a simpler form.
Thus, using dimensional arguments, equation (12) can be simplified to

∇ p + mnaη̄v = 0. (18)

This approximation assumes that the flow field is able rearrange itself much faster than the
interfacial line motion. From (18) it follows that

v = ∇φ, (19)

where

φ = −p/mnaη̄. (20)

The continuity equation (11) then gives

∇2φ = 0, (21)

which is a convenient starting point for numerical treatment.
We have performed kinetic Monte Carlo computer simulations of the squeeze-out process

using the equations above (see [22]). In the simulations we also include a line energy 


between the squeezed out region and the 2D fluid region, chosen high enough to remove line
boundary instabilities. The physical origin of this line energy is discussed in section 4.3. Its
value is related to the effective elasticity of the mica substrates.
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Figure 19. Simulation snapshots of squeeze dynamics. An initial (small) squeezed circular zone
is assumed located in the centre of the contact (left figures) and slightly off-centre (r = 0.15R,
right figures). The black area indicates squeezed zones and the white, fluid. The overall shape of
the contact area is circular. A time arrow is also indicated. (From [59].)

We consider squeeze-out for the case where 
 is so large that the 2D liquid boundary
line is relatively smooth on the length scale of the contact area. We consider the cases where
the nucleation starts in the centre of the contact area, and where it starts slightly off-centre
(r = 0.15R). Figure 19 shows snapshots of the two systems. Note that the boundary line
in the off-centre case propagates faster toward the nearest edge of the contact area, while the
centred case evolves in a quasi-symmetrical fashion.

Figure 20 shows the time evolution of the effective radius r/R = (A/A0)
1/2 of the

squeezed area. We show both simulation results and the analytical result (from figure 18(d)).
The agreement between the analytical formula and the simulations is excellent; the results
differ only toward the end of the squeeze-out process, where the radial symmetry is completely
lost. More remarkable is the agreement between the off-centre simulations and the analytical
solution which is centrosymmetric. Figure 20 shows that the relation between the effective
radius r/R and the squeeze time τ is rather insensitive both to where the squeeze-out nucleates
and to the detailed form of the squeezed out area. Note also that some sections of the boundary
line assume a negative curvature (see figure 19) in the late stages of the simulations, in
accordance with the experimental results shown above (figure 16).

In figure 20, we also show the effective radius r(t)/R of the (n − 1) island, as determined
from the experimental data shown in figure 16 (symbols). Obviously, the agreement between
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Figure 20. Effective squeeze radii from experiments simulations and analytical calculations. All
calculations used Hertz stress profile. (From [59].)

the experimental data and both the analytical theory and the simulations are very good for
r(t)/R < 0.7. The only adjustable parameter in this plot is the effective friction coefficient η̄.
For later times, the experimental data increase much more slowly than the analytical solution.
This is not surprising since the circular symmetry is broken at this stage. The numerical results
for off-centre nucleation, however, nicely reproduce the tail in the experimental data for long
times.

4.3. Boundary line instability

Experimental results. If the substrates are softer than in the experiments described above, the
squeeze-out dynamics becomes more complex. Figure 22 shows another series of snapshot
images recorded during a layering transition. The specific system investigated here was 1-
undecanol (C11H23OH). This material forms self-assembled monolayers on mica with the
OH groups pointing toward the mica surface [60]. On top of this effectively CH3-terminated
substrate any additional material inside the gap can slide very easily [61]. The entity that
is expelled in figure 22 corresponds to a bilayer of C11H23OH, as sketched in figure 21.
The total thickness of the two mica sheets together was less than 0.5 µm, making the solid
walls effectively very soft. In these experiments, the bending of the boundary line (image 4
in figure 22) was much more pronounced than in figure 16. Furthermore, the boundary line
became progressively rougher with increasing time. Ultimately, the roughness became so large
that nanodroplets of liquid were detached from the overall dynamics and remained trapped
inside the contact area in the final state. When the experiment was repeated approximately
100 times it turned out that nanodroplets were found at random locations. This proved that
trapping was not caused by contamination at certain positions on the surfaces. There was a
clear random character intrinsic to both the roughening of the boundary line and to the positions
of the trapped nanodroplets.

Theoretical description. We will now show that the model presented in section 4.2 predicts
rough boundary lines when the line energy 
 is small. When 
 = 0, any small perturbation
of the boundary line will be amplified, so that the boundary line is unstable with respect to



Topical Review R315

Figure 21. Surface bound C11H23OH monolayers and an additional bilayer.

1 2 3 4

5 6 7 8

Figure 22. Snapshots of the contact area during the layering transition. Due to a different choice
of the wavelength of light to that for figure 16, darker areas correspond to smaller film thickness in
this case. Image 1 was subtracted from the original images 2–8 in order to improve the contrast.
Images 2–7 were recorded at 0.16 s time intervals. (Adapted from [44].)

arbitrary small perturbations. In real systems such perturbations always exist, e.g., due to
defects or thermal fluctuations.

It is easy to show that when 
 = 0, the time evolution of the boundary line is unstable
with respect to small perturbations. Let us first consider a perfectly smooth circular boundary
line centred at the centre of the contact area. For a perfect system (no defects or fluctuations),
by symmetry such a boundary line would propagate in a symmetric (circular) way until it
reached the outer boundary of the contact area. Now assume that, due to a fluctuation, a small
protrusion is formed on the boundary line, which will locally decrease the distance to the outer
boundary line r = R; see figure 23(b). By analogy to electrostatics, this will give rise to an
enhanced ‘draining’ velocity of the fluid at the protrusion, so that the boundary line at the
protrusion will move faster toward the periphery than in the other regions. This argument
is valid for protrusions of any size, and it follows that, within the model discussed above,
the boundary line will be rough at all length scales. This instability of moving boundaries
is known in a slightly different context as Saffmann–Taylor instability. However, when the
free energy (per unit length) 
 (line tension) of the boundary line is taken into account, the
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(a) (b)

Figure 23. (a) Squeeze-out in the case of perfect symmetry. The boundary line is a circle. (b) When
a small protrusion occurs on the otherwise circular boundary line, the squeeze-out velocity is
enhanced at the top of the protrusion.

boundary line will be smooth on all length scales below some critical cut-off length λc, while
it will be rough on longer length scales. It turns out that [20]

λc = 2π(
/mnaη̄v0)
1/2, (22)

where v0 is the velocity of the boundary line.
The line tension 
 has a contribution from unsaturated bonds at the boundary line, and

another much larger contribution from the energy stored in the elastic deformation field in the
confining solids in the vicinity of the boundary line. If a denotes the difference in separation
between the solid walls in the n = 1 and 0 regions (which is of order the thickness of a
lubrication monolayer), then it follows from dimensional arguments that the elastic deformation
energy per unit length of boundary line must be of order Ea2. A more detailed argument is as
follows: the elastic energy stored in the boundary line is

∼ 1
2 E

∫
d3x ε2.

Now, the strain ε ∼ a/ l, where l is the lateral distance over which the elastic displacement
field varies along the solid surfaces perpendicular to the boundary line. Since the elastic
displacement field satisfies a Laplacian-type equation in solids, it follows that l is also the
characteristic distance over which the displacement field extend into the solids. Thus the
volume which contributes to the integral above will be of order 2π Rl2 (where 2π R is the
length of the boundary line). Hence we get the line energy ∼E(2π Rl2)(a/ l)2 = (2π R)(Ea2)

so that 
 ≈ Ea2. In fact, an exact calculation (within the elastic continuum model) gives

 = Ea2/2π(1 − ν2).

The width l depends on the applied perpendicular pressure and in some of the experiments
l may be larger than the thickness d of the mica sheets. In this latter case the line energy will
be smaller than given by the expression derived above, which is based on the assumption of
a semi-infinite solid. To show this, assume that l � d so that we can treat the mica sheets
using the theory of elastic plates. Let u(x) denote the vertical displacement field of a thin plate
which originally (in the undeformed state) lay in the xy plane. The elastic energy stored in the
plate is given by [62]

Eplate = Ed3

24(1 − ν2)

∫
d2x [(∇2u)2 − 2(1 − ν)|ui j |],

where the determinant

|ui j | = ∂2u

∂x2

∂2u

∂y2
−

(
∂2u

∂x∂y

)2

.
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Now, consider a bending deformation of the plate in the x-direction over an area of width
(in the x-direction) l and length (in the y-direction) B with the displacement a. In this case
∇2u ∼ a/ l2 and similarly for |ui j | so that

Eplate ≈ Ed3 Bla2/ l4 = Ed3 Ba2/ l3

so that 
 ≈ Ea2(d/ l)3. A more accurate calculation gives 
 = 2Ea2(d/ l)3/(1 − ν2). If
we neglect the elastic energy stored in the relatively soft glue layer used to attach the mica
surfaces to the glass cylinders in the SFA, then we can write an interpolation formula for the
line energy:


 ≈ Ea2

2π(1 − ν2)

1

1 + (l/d)3/4π
. (23)

From the discussion above it follows that the line energy 
 can be varied by changing
the thickness of the mica sheets. Thus, the line energy 
 was exceptionally low in [44] (see
figure 22), because the mica thickness was <500 nm, whereas it was 2.5 µm in the experiments
reported on in section 4.2. For the simulation results presented below, we chose the line tension

 such as to reproduce the observed roughness of the boundary lines [22].

Under the experimental conditions in [44] equation (8) predicts λc ∼ 5 µm, which equals
1/10 of the diameter of the contact area. The experimental boundary line for C11H23OH is
indeed rough at this length scale, while it is smooth on shorter length scales. On the basis of
this result one may also argue that the linear size of the trapped islands should be of order λc

(or larger), which again agrees with the observations (see the bottom row of figure 22).

Computer simulations. We now present results of computer simulations of the layering
transition, for the case where 
 is so small that the boundary line is rough on a length scale
much smaller than the diameter of the contact area. Figure 24 (top) shows snapshot pictures of
the layering transition for a Hertzian contact pressure and with the line tension 
 > 0 chosen
so that the boundary line is smooth on length scales smaller than about R/10, where R is the
radius of the contact area. Note that the boundary line is rough for all length scales (fractal)
above a lower cut-off length λc determined by the line tension. Figure 24 (bottom) shows
snapshot pictures of the layering transition when the line tension 
 = 0. In this case a fractal
pattern occurs for all length scales above the short distance cut-off length, given by the mesh
size. This behaviour is in sharp contrast with experiment (figure 22) [44, 46, 59], showing the
fundamental importance of the line tension 
 for a correct description of the dynamics of the
squeeze-out process.

During squeeze-out (figure 24 (top)) the local curvature of the boundary line between the
n = 1 and 0 regions becomes strongly negative in some areas. As in the experiments, some
of these areas eventually detach from the boundary and leave behind pockets of n = 1 layer
trapped material in the final n = 0 state. The behaviour of these islands will be discussed in
detail in section 4.4.

Figure 25 shows the same as figure 24, but now with a constant contact pressure,
P(r) ≡ P0. Note that the fast propagation along the periphery of the contact area causes
trapping of a huge fluid island. When a Hertzian contact pressure is assumed, the increase
in the squeeze-out speed close to the periphery is much smaller (since P → 0 as r → R),
which makes it possible to squeeze out much more fluid from the interior of the contact area,
resulting in much smaller ‘trapped’ islands, in qualitative agreement with experiment. We also
note that in figure 25 the squeeze-out process stops when the drained area encircles the trapped
island. At this point there is no pressure difference across the fluid and the dynamics stops.
This is in sharp contrast to the Hertzian contact pressure case and to the experiments, where a
squeeze-out force acts radially on any island of ‘trapped’ fluid.
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Figure 24. Snapshots of the layering transition for Hertz contact pressure with the line tension
included (top), and with zero line tension (bottom). (From [21].)

Figure 25. Snapshots of the layering transition for constant contact pressure with the line tension
included (top), and with zero line tension (bottom). (From [21].)

4.4. Motion of trapped island

Experimental results. Lubricant nanodroplets trapped inside the contact area are in general
not stable. Due to the spatial variation in the normal stress from a maximum in the centre to
zero at the periphery of the contact area, they experience a net force. Figure 26 shows the
evolution of the droplet already shown in figure 10. The volume and shape of the droplet
are essentially conserved while it drifts slowly from its original position toward the edge of
the contact area. A careful inspection of the video data shows that the droplet motion in not
perfectly homogeneous and continuous. Occasionally, the boundary line seems to get pinned
locally before it continues to move. (Video clips can be viewed at www.wetting.de/sfa.htm.)
The droplets accelerate as they approach the edge of the contact area. Ultimately, they become
elongated along the radial direction and form small necks connecting them to the surrounding
reservoir (bottom row of figure 26). Subsequently, most of the liquid is squeezed out through

www.wetting.de/sfa.htm
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Figure 26. Snapshots during squeeze-out of a nanodroplet with n = 4. (Scale bar: 20 µm;
�t = 0.5 s between images.)

these necks. It is remarkable, however, that a finite amount of liquid usually remains trapped
inside the contact area even in the final state. The same was observed for the nanodroplets
shown in figure 22. In those experiments, the droplets did not move at all once they were
formed [44], but remained trapped inside the contact area indefinitely.

Hydrodynamic description. The analysis of the dynamics is straightforward. The elastic
energy stored in the solids at a trapped island can be written as

U =
∫

d2x P(x)h(x), (24)

where P(x) is the 3D squeezing pressure. When the squeezing pressure is constant, P(x) ≡ P0,
we get

U = P0�V

where �V is the volume of the trapped island. Thus, in this case the elastic energy is
independent of the location of the island in the contact area. This implies that the external
squeezing pressure will not exert any tangential force on the island. However, when P(x)

varies with the location x in the contact area, the energy U will also depend on the location of
the island, which will give rise to a tangential force on the island. If we assume that the shape
of the island does not change when we vary the (centre of mass) position r of the island, and
if we assume that the island is disc-like with thickness h0, then

∂h

∂r
= h0

∮
ds nsδ[xs − (x − r)],

where the line integral is over the boundary of the island (s is the boundary length coordinate),
xs is the position vector of the boundary line relative to the centre of mass position r of the
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island and ns is the local normal to the boundary line, pointing away from the island. Thus we
get the force on the island

F = −∂U

∂r
= −

∮
ds h0 P(r + xs)ns . (25)

Using this formula, we find that the forces acting on the nanodroplets in the experiments
are typically of the order of 10−8–10−7 N. If we divide this by the droplet area, we obtain a
typical shear stress of no more than 1 kPa.

For a small island the pressure P will vary very little over the island and we can make the
approximation

U =
∫

d2x P(x)h(x) ≈ P(r)
∫

d2x h(x) = P(r)�V . (26)

If we assume that P(r) only depends on the distance r = |r| from the centre of the contact
area, we get the radial acting force

F = −P ′(r)�V . (27)

Let us consider the motion of a small (compared to the size of the contact area) island with
height h0 and area �A, which we assume does not experience any pinning forces. We will
calculate the dependence of the velocity v(r) of the island on the distance r from the centre of
the contact area. We assume overdamped motion, and can thus neglect the inertia force acting
on the island, so that the driving force F(r) must just balance the frictional drag force from
the solid walls:

na�Amη̄v(r) = F

or

v = − h0

namη̄
P ′(r).

If P(r) is given by the Hertz expression (7) then this gives

v

v0
= r

R

(
1 − r2

R2

)−1/2

, (28)

where

v0 = 3

2

h0 P0

na Rmη̄
. (29)

This function is shown in figure 27(a). Note that the velocity goes to infinity for r = R.
However, for any finite size island (radius b), when r = R − b the island will make contact
with the region outside the contact area, and, as we saw above (figure 26), the liquid drop will
be squeezed out through a small neck; this behaviour was reproduced in computer simulations.

It is easy to integrate (28) to get the radial position r(t) of the island as a function of time.
In particular, the time t it takes to squeeze out an island is given by

t

t0
=

∫ 1

r/R
dx

(
1

x2
− 1

)1/2

(30)

where r = r(0) is the initial distance of the island from the centre of the contact area, and
t0 = R/v0. This function is shown in figure 27(b).
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Figure 27. (a) The radial velocity v of a small island as a function of the distance r from the centre
of the contact area. (b) The time t it takes to squeeze out a small island as a function of the initial
distance r from the centre of the contact area.

Pinning and numerical results. From the experiments it is clear that the trapped islands
withstand a finite shear stress in some cases. Clearly, a perfect fluid in a homogeneous
surrounding is not expected to do so. Either the droplets are transformed into a solid-
like state pinned by the atomic corrugation of the solid walls (which hence require a finite
shear stress to depin), or the substrates are in fact not perfectly homogeneous. The former
possibility is particularly attractive since it conforms with earlier reports on confinement
induced solidification [17, 18]. However, the initial nanodroplet in figure 26 moved although
the total shear stress acting on it was only ≈1 kPa. The critical shear stress of a potentially
solidified film would thus be extremely low. Chemical heterogeneity due to adsorption of
contamination seems to be more likely. Under typical experimental conditions, the applied
pressure is of the order of 1 MPa and h0 ≈ 1 nm, corresponding to an elastic energy per unit
area of 1 mJ m−2. Any heterogeneity of the surface energy of that order would be sufficient to
pin a droplet. Since P decreases toward the edge of the contact area, even less heterogeneity
is sufficient there. If pinning centres occur at the interface, they will cause fluctuations of the
velocity v(r) of the island, and in a distribution of squeeze-out times (for identical starting
distance r(0)). Currently available experimental data support this idea qualitatively, but do not
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Figure 28. The fractional area occupied by the fluid as a function of time without (solid curve)
and with (dotted curve) pinning centres, and with the squeeze-out nucleus at r = 0.6R.

allow a quantitative comparison. Nevertheless, detailed future studies of the motion of islands
will give information about the nature of the pinning dynamics.

In recent numerical simulations,a different procedure was used to model pinning. Namely,
we introduced small, high friction areas, where η̄ was taken to be 104 times higher than in the
remaining area. This produced pinning of the fluid in these areas, resulting in a finite amount
of trapped liquid even for very large times. Figure 28 shows the variation of the fractional area
occupied by the fluid as a function of time without (solid curve) and with (dotted curve) pinning
centres, assuming that the initial n = 0 nucleus occurs at r = 0.6R. Without pinning centres,
the liquid is squeezed out completely. In the presence of pinning centres, however, about
1.3% of the liquid remains trapped at the interface for large times. The data were obtained
from the kinetic Monte Carlo simulations discussed in the previous section [21]. The solid
curve in figure 29 shows the same data, but this time for an initial position of the nucleus at
r = 0.7R, and with a concentration of pinning areas, corresponding to about 13% of trapped
fluid remaining for longer times. These parameters mimic the experimental conditions of
figure 22. The circles are the experimental results.

Let us return to the experimental observation of Roberts of a very slow removal of water
droplets trapped at the interface between a rubber ball and a glass substrate (section 3.3).
Assume that the droplets drift slowly toward the periphery of the contact area because of the
change in elastic energy with the lateral position of the droplet. We assume that the radius r0

of the bottom surface of the droplet is small compared to the radius R of the contact area, so
that the lateral force is given by F = −P ′(r)�V . Assume first that the rubber–glass interface
is perfect, e.g., without surface roughness and contamination. If we assume no-slip boundary
conditions on the glass and rubber surfaces, then the viscous dissipation of energy per unit
time inside the water droplet is of order

µ

(
v

H

)2

�V

where H is the height of the droplet. Thus the speed of the squeeze-out is given by

−P ′(r)v ≈ µ

(
v

H

)2
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Figure 29. The fractional area occupied by the fluid as a function of time with the initial position
of the squeeze nucleus at r = 0.7R. Solid curve: theory. Circles: experimental. (From [21].)

or

v ≈ −P ′(r)H 2/µ.

Since −P ′(r) is of order P0/R, we get

v ≈ H 2 P0/(µR)

and the squeeze-out time will be of order

τ ≈ R

v
≈

(
R

H

)2
µ

P0
.

In a typical case H ≈ 10−6 m, R ≈ 10−3 m, P0 ≈ 105 Pa and (for water) η ≈ 10−3 N s m−2

giving τ ≈ 0.01 s. However, the observed squeeze-out time was several hours. We believe
that the explanation for this discrepancy is related to surface defects which give rise to pinning
of the boundary line. Thus, the situation is probably very similar to the motion of a liquid
droplet on a tilted flat glass substrate (where the gravitational force is the driving force), where
contact angle hysteresis usually occurs as a result of pinning of the boundary line by surface
defects. This manifests itself in an advancing contact angle θa (the front angle in the direction
of droplet motion), which is larger than the receding angle θr (the rear contact angle). The
pinning force per unit length of the boundary perimeter can be related to θa and θr, and is
typically of order γp ≈ 0.01 N m−1. The ratio between the driving force

F = −P ′(r)�V ≈ P0�V/R

and the pinning force

Fp ≈ 2r0γp

is of order
π

2

P0 Hr0

γp R
.

Since typically γp = 0.01 N m−1 and r0 ≈ 10−4 m we get a ratio of order 1. Thus the driving
force is of similar magnitude to the pinning force, and it is clear that if a droplet were to be
pinned according to the argument presented above, it might still drift slowly due to thermally
activated local depinning of (small) boundary line segments (creep motion). We believe that
this is the origin of the water droplet squeeze-out in the Roberts experiments.
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4.5. Role of the 2D lubricant compressibility

So far we have assumed that the lubricant behaves as an incompressible 2D liquid. While
that assumption is quite good for many practical situations, recent computer simulations [37]
have shown that, at least at high squeezing pressures, strong density fluctuations may occur in
the lubrication film. For example, in [37] it was found that during the layering transition
n = 2 → 1, while islands of (temporarily) trapped bilayer (n = 2) were removed by
being squeezed into the monolayer, the density of the monolayer film was much higher in
the region close to the trapped n = 2 islands than further away; see figure 30. This resulted
in a 2D pressure gradient in the film which induced a flow of the lubricant molecules away
from the trapped islands. This kind of situation clearly calls for a consideration of the finite
compressibility of the film.

The squeezing of one layer into another layer, as in figure 30, has also been observed
in experiments. Thus, in figure 31 we show the consecutive collapse of two liquid layers
(4 → 3 → 2). Due to the high load rate, nucleation of the first collapse occurs at several
locations simultaneously (top row), as in figure 10. The volume of the bright area in the top row
decreases with time, because material is squeezed out from this area into the reservoir through
the two other remaining layers. Since the images only depend on the separation between the
surfaces at the interface, no information about in-plane density fluctuations can be inferred
from the pictures. For the transition 3 → 2, there is only one nucleation site (cf image 7).

In [63] we have studied the dynamics of the expulsion of the last liquid monolayer
of molecules confined between two surfaces by solving the two-dimensional (2D) Navier–
Stokes equation for a compressible liquid monolayer. The influence of the compressibility
on the squeeze-out is characterized by the parameter g0 ≈ P0/ρc2, where P0 is the
average perpendicular (squeezing) pressure, ρ the liquid (3D) density and c the longitudinal
sound velocity in the monolayer film. When g0 � 1 the 2D liquid can be considered
as incompressible, in which case the results of the earlier treatment (see section 4.2) are
reproduced. The main changes due to compressibility occur right at the onset of the squeeze-
out process, and just before its completion.

Using the typical values ρ ≈ 1000 kg m−3 and c ≈ 700 m s−1 we get ρc2 ≈ 0.5 GPa. In
the experiments described in sections 4.2–4.4 (as well as in most other surface force apparatus
studies) the average squeezing pressure P0 � 0.5 GPa which implies that the liquid can be
considered as incompressible. Thus the use of the theory described in section 4.2 was indeed
justified. However, in many practical situations the pressure P0 might be similar to the yield
stress of the solids which for metals is typically of order 1 GPa. In these cases it is necessary to
include the finite compressibility of the lubricant in order to accurately describe the squeeze-out
dynamics.

In [63] it was found that for a Hertzian squeezing pressure profile, P(r) = PH(r), the
squeeze-out time depends on the compressibility, increasing from ≈0.8183τ to 1.3333τ as
the compressibility increases from B = 0 to ∞, where τ is the squeeze-out time for an
incompressible 2D fluid with constant squeezing pressure (see section 4.2). In figure 32 we
show the squeeze-out time as a function of g0.

The main effect of compressibility appears at the beginning and at the end of the squeeze-
out process. Initially, compressibility favours piling up of fluid at the boundary line between
the squeezed out area and the 2D fluid, which can as a result expand more rapidly, compared
with the case of an incompressible fluid. On the other hand, when the hole approaches the
boundary of the contact region, the squeezing out speed of the compressed fluid is smaller, due
to its increased 2D density and, consequently, friction. In the case of uniform 3D squeezing
pressure, P(r) ≡ P0, these two effects compensate exactly, leading to a total squeeze-out time
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Figure 30. Squeeze-out of a monolayer (the n = 2 → 1 transition) of Xe from the contact region
between two curved steel surfaces (see section 4 for details of the model). These pictures show
the central part of the contact area. The dark (fine grained) grey area is a (bilayer) 1 × 1 structure,
while some hexagonal (bilayer) Xe structure can be observed at the periphery of the contact area in
snapshot pictures t = 60, 80 and 280. The dotted area is the hexagonal Xe monolayer film which
remains after the n = 2 → 1 transition is completed. We note that even though most of the bilayer
disappears in the two rapid transitions (t = (60, 80) and (280, 300)) an island of 1 × 1 bilayer
remains trapped for a while, and only gradually disappears as it is squeezed into the first monolayer.
This process is accompanied by a lateral flow of atoms in the monolayer film toward the periphery
of the contact area. The speed of the island squeeze-out is determined by the sliding friction as a
patch of Xe monolayer film slides relative to the solid walls. Note that the local concentration of
Xe atoms in the vicinity of the bilayer island is somewhat higher than far away; thus, there must
be a 2D pressure gradient in the monolayer film which, of course, is the driving force of the lateral
flow. During the flow this pressure gradient is mainly balanced by a frictional shear stress acting
on the monolayer film as it slides or drifts relative to the solid walls.

independent of the compressibility. For a Hertzian pressure distribution, the squeeze-out time
instead increases with increasing compressibility: the initial speed up is overcompensated by
the enhanced friction at the periphery of the contact area.

4.6. Role of the perpendicular pressure

In a very recent paper Mukhopadhyay et al [64] have used fluorescence correlation
spectroscopy to study diffusion in molecularly thin confined layers of OMCTS. Spatially
resolved measurements showed that translational diffusion slows exponentially with increasing
perpendicular pressure from the edges of a Hertzian contact toward the centre, suggesting that
friction reflects a disproportionate contribution from those more sluggish molecules that reside
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50 µm

Figure 31. Consecutive collapses of two liquid layers (4 → 3 → 2). Due to the high load rate,
nucleation of the first collapse occurs at several locations simultaneously (top row), as in figure 10.
The volume of the bright area in the top row decreases with time, because material is squeezed out
from this area into the reservoir through the two other remaining liquid layers. For the transition
3 → 2, there is only one nucleation site (cf image 7). (Total time: 1 s; image width: 80 µm; bright:
thicker liquid layer; dark: thin.)
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Figure 32. The dependence of the squeeze-out time on the compressibility parameter g0 for a
Hertzian squeezing pressure.

near the centre of a contact zone. On the basis of the Einstein relation, one may be tempted
to assume that the sliding friction, η̄, which enters in the squeeze-out dynamics, will have
a similar pressure dependence to the (inverse of the) diffusivity. However, we have shown
in [59] that this assumption leads to a squeeze-out dynamics in complete disagreement with
the experiments [41, 44, 46].

Mukhopadhyay observed that the diffusivity in an OMCTS film, three monolayers thick,
depended exponentially on the perpendicular pressure, D ∼ exp[−αP(r)], where α is an
empirical exponent and P(r) is the normal stress which we will take to be of the Hertzian form.
In accordance with the Einstein relation we assume η̄ ∼ 1/D so that η̄(r) ∼ exp[αP(r)]. In
figure 33 we show the dependence of the squeeze radius on time for different values of the
parameter λ = (3/2)αP0, where P0 is the average pressure in the contact zone. From the
diffusion experiments in [64] we deduce λ ≈ 8.6. Note that when λ increases, the squeeze-out
is slower at the early stages up to r/R ≈ 0.7, after which it becomes significantly faster.
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However, the complete squeeze-out time is rather insensitive to the value of λ, and even for
very large λ it is only ∼15% smaller than for λ = 0. The reduction in the squeeze-out time
saturates as we increase λ.

It is clear that, if one assumes that the sliding friction is related to the diffusivity via the
Einstein relation, the squeeze-out dynamics predicted with a position dependent friction is in
complete disagreement with the diffusivity experiments of Mukhopadhyay et al. Our analytical
results and computer simulations show that only a very weak r dependence of η̄ is possible if
one is to avoid disagreement with the measurements in figures 22 and 16 [41, 44, 46]. Perhaps
this observation is related to a phase transformation of the lubrication film from a solid-like
state before squeeze-out to a liquid-like state during squeeze-out. In any case the observed
discrepancy seams to be very fundamental, and requires much more investigation.

4.7. Dewetting of soft interfaces

In the discussion above, the squeeze-out of a liquid is due to an external applied squeezing
force. However, for a nonwetting liquid between elastically soft solid walls, e.g., rubber, the
squeeze-out can also result (even when the applied squeezing force vanishes) from the adhesive
interaction between the solid walls. The dewetting of a liquid film intercalated between a
solid substrate and a rubber surface is a topic of both great scientific interest and of practical
importance, e.g., for wiper blades, or rubber friction on a wet substrate [57, 58]. Dewetting
is also likely to be of great importance in many biological applications, e.g., involving cell
adhesion to a substrate.

Consider a liquid squeezed between two smooth solid walls. Two limiting cases have
been observed and studied for the squeeze-out dynamics (see figure 34). Thus, as shown
above, for hard solid walls the squeeze-out of the last few monolayers of a wetting [46] or
nonwetting [44] liquid occurs in a quantized manner, involving a monolayer at each step; see
figure 34(a). The layering transition n → n−1 (where n is the number of trapped monolayers)
typically nucleate in the central, high pressure region of the contact area, and spread circularly
toward the periphery of the contact area. During the whole squeeze-out process, the surfaces
are locally separated by either n or n−1 monolayers, e.g., no rim of thicker fluid film is formed
at the boundary line between the n and n−1 thickness regions. Instead, the n-monolayer region
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Figure 34. (a) Squeeze-out of a fluid between hard solid walls. During the layering transition
n → n − 1 (n = 2 in the figure) the surfaces are everywhere separated by n or n − 1 monolayers of
fluid. The 2D fluid velocity is non-vanishing at the periphery of the contact area. (b) Squeeze-out
of a nonwetting liquid between a hard substrate and an elastically soft block. The squeezed liquid
accumulates in a rim and the fluid velocity at the periphery of the contact area vanishes.

displaces as a whole toward the periphery of the contact area. Since the volume of fluid trapped
between the solid walls decreases continuously during squeeze-out, there will be a pressure
induced work on the film which, as shown above, is the main driving force for the squeeze-out.
The pressure work is dissipated at the interface via an interfacial frictional process, which
occurs when the n-layer 2D fluid slab moves relative to the solid walls. The balance between
the ‘pressure’ force and the interfacial friction force determines the squeezing dynamics and
the squeeze-out time; see section 4.2.

For a nonwetting liquid between elastically soft solids, e.g., rubber, another squeeze-out
scenario has been observed [65–68]. Here the squeeze-out typically nucleates at some defects,
e.g., a surface asperity, at a relatively large film thickness, say a few hundred ångströms, and
the film thickness abruptly vanishes in the squeezed region; see figure 34(b). Furthermore, the
squeezed fluid accumulates as a rim at the boundary between squeezed and fluid regions, and
the amount of fluid between the solid walls does not change until the rim reaches the boundary
of the contact area. This scenario is possible only because of the relatively small elastic energy
necessary in order to deform the surrounding solid walls at the rim.

Interfacial energies and droplet shape. The stability of a liquid film between a rubber block
and a solid substrate is controlled by the spreading parameter

�γ = γRS − (γRL + γLS), (31)

where γRS, γRL and γLS are the rubber/solid, rubber/liquid and liquid/solid interfacial free
energies per unit area. If �γ > 0, a liquid droplet is intercalated between the rubber and the
solid, and will spread (complete wetting) at the solid/rubber interface. In this case a liquid film
is stable. If �γ < 0, the droplet intercalated between the rubber and the solid will not spread
(partial wetting) and a flat liquid film is unstable. It is expected to dewet by nucleation and
growth of a dry patch surrounded by a liquid rim, collecting the rejected liquid [5, 65–67].

The value of �γ can be derived from the static shape of a liquid droplet intercalated at
the rubber/solid interface [65–67]. Thus if H is the thickness of the drop and D the diameter
of the bottom surface (so that the contact area between the liquid droplet and the substrate
A = π D2/4), see figure 35, then the free energy of the system

U = −�γ A + C E(H/D)2 D3 (32)
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Figure 35. A liquid droplet trapped at the interface between an elastic solid (e.g., rubber) and a
hard flat substrate.
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Figure 36. Nucleation of squeeze-out (dewetting) of a nonwetting liquid film trapped between an
elastic solid (e.g., rubber) and a hard flat substrate.

where C is a constant of order unity. The last term in (32) is the elastic energy stored in the
rubber, which is equal to the product between the elastic modulus E , the square of the strain
H/D and the volume of the elastically deformed rubber which scales as D3 with the diameter
D. Minimizing with respect to H and D with the constraint that the volume ∼H D2 is constant
is conveniently performed using the Lagrange method. Thus with

U = −�γ A + C E(H/D)2 D3 + λH D2

we get

∂U

∂ H
= 2C E H D + λD2 = 0,

∂U

∂ D
= −(π/2)�γ D + C E H 2 + λ2DH = 0.

Thus

D = 6C

π

H 2

δ
, (33)

where the characteristic length δ = |�γ |/E is usually in the range 100–1000 Å for soft rubber.
An exact analysis [69] gives C = π2/18. Thus from the profile of the droplet we can derive
h and R and thus determine �γ .

Let us now consider the dewetting process. Assume that the initial state consists of a
uniform thick liquid layer between the substrate and the flat rubber surface. Let us first briefly
discuss the nucleation of squeeze-out [65–67].

Nucleation. Let us estimate the free energy U(R) required to make a bridge of radius R
between the elastomer and the solid substrate; see figure 36. The deformation of the rubber
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around the contact extends over a length ∼R in which the strain is of order h/R. Thus the
stored elastic energy is ∼E R3(h/R)2. The gain in surface energy upon forming a dry contact
area of radius R is π R2�γ . Thus neglecting factors of order unity,

U ≈ 2π RhγRL + π R2�γ + E R3(h/R)2.

If we neglect the first term (which, however, is important for small enough elastic modulus
E), since �γ < 0, the function U(R) correspond to a barrier with the height

�E ≈ E2h4

4π |�γ | = 1

4π
|�γ |δ2

(
h

δ

)4

, (34)

and critical radius Rc ≈ (1/2π)h2/δ. The probability rate for nucleation of the squeeze-out
is determined by the Boltzmann factor w = ν exp(−�E/kBT ), where the prefactor ν is very
large, of order 1016 s−1, due to the large entropy associated with placing the nucleus on many
different places in the contact area. For perfectly flat surfaces (no defects) nucleation on a
macroscopic timescale τ (say one nucleus per second) will occur when the activation barrier
�E ≈ kBT ln(ντ ) ≈ 1 eV, which for rubber (E ≈ 1 MPa and �γ ≈ 1 meV Å−2) corresponds
to the film thickness h ≈ 100 Å and the critical radius Rc ≈ 20 Å. In most practical applications
the nucleation will occur at much larger film thickness due to imperfections.

Since �E must be of order 1 eV in order for the nucleation to occur on a macroscopic
timescale, and since the thinnest film possible is one molecular layer (thickness a),
equation (34) gives the highest possible elastic modulus E = Ec for which the present
nucleation mechanism, involving the interfacial energy |�γ | as the driving force, is possible,
namely

Ec ≈
(

4π�E |�γ |
a4

)1/2

≈ 1 GPa.

This is much higher than the elastic modulus of rubber, and of similar magnitude to the elastic
modulus of polymers in the glassy region. However, it is much smaller than the elastic modulus
of most ‘normal’ materials such as steel or glass, where typically E ≈ 100 GPa. Nucleation
of squeeze-out is also possible for ‘hard’ materials with E > Ec, but in these cases the solids
will not make contact in the nucleation ‘hole’, but will bend inward toward the hole, which
reduces the elastic energy stored in the solids as a result of the applied squeezing pressure [19].
In this case the fluid, which originally occupied the region of the hole, occurs either as an in-
plane density fluctuation in the monolayer film or, more probably (as assumed in the original
theory [19]), the same amount of fluid is transferred to the region outside the contact area.

Spreading. Experiments have shown that when one of the solid walls (rubber) is elastically
very soft, dewetting typically starts when the lubrication film is relatively thick,perhaps 1000 Å,
when nucleation occurs at a defect [65–67]. During squeeze-out the liquid is collected into a
rim that surrounds the hole. The dewetting is relatively slow (1–10 µm s−1), and the profile
of the rim is very similar to the shape of a sessile droplet. Some experimental data (see
below) can be interpreted on the basis of a crude hydrodynamic model, which assumes that
the gain in surface energy is entirely dissipated in the moving rim, while the rubber is purely
elastic [65, 66].

Assume that R � w and H � h, where w and H are the width and the thickness of the
rim; see figure 37. If a dry patch of radius R(t) occurs at time t , volume conservation of the
liquid gives

π R2h ≈ 2π RwH,
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Figure 37. The profile of the liquid rim during squeeze-out.

or

Rh ≈ 2wH. (35)

If the profile of the rim is assumed to be quasistatic (i.e., similar to the profile of a sessile
droplet at the solid/rubber interface), then (from equation (33) with D = w)

H 2 ≈ wδ. (36)

Assume that the perpendicular 3D pressure is constant in the contact zone, P ≡ P0. In this case
the driving force for squeeze-out is entirely due to the change in the surface energy. Assuming
that the gain in the surface energy is entirely dissipated in the moving liquid rim, one gets

d

dt
(−�γπ R2) ≈ η

(
v

H

)2

�V , (37)

where �V ≈ 2π RwH is the volume of the rim, η the fluid viscosity and v = Ṙ the velocity
of the rim. In equation (37) we have neglected the elastic energy stored in the rubber at
the rim since it scales as R5/3, and is negligible for large radius R of the rim. Combining
equations (35)–(37) gives [65–67]

R(t)

R0
≈

(
t

τ

)3/4

, (38)

where the squeeze-out time

τ = η

|�γ |
3

4

(
h R4

0

2δ2

)1/3

. (39)

The prediction (38) is in good agreement with some experimental observations [66].
The assumption made above of a constant perpendicular 3D pressure is usually not a

good approximation. Rather, in most cases of interest the pressure profile is nearly Hertzian,
P = PH(r). In this case there will be another contribution to the driving force for squeeze-
out coming from the variation in the pressure energy as the rim of liquid moves toward the
periphery of the contact zone [70]. Since the contribution to the change in the energy from the
external pressure equals

U ≈ P(R)π R2h −
∫ R

0
dr 2πr P(r)h,

we get

dU

dt
= P ′(R)π R2h Ṙ. (40)
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Assuming a Hertzian contact pressure distribution gives

P ′(R) = −P0
3R

2R2
0

[
1 −

(
R

R0

)2]−1/2

,

where R0 is the radius of the contact area and P0 the average squeezing pressure. Thus,

dU

dt
= −3π

2
P0h RṘ

(
R

R0

)2[
1 −

(
R

R0

)2]−1/2

. (41)

Let us compare this with the rate of change of the interfacial energy

d

dt
(−�γπ R2) = −�γ 2π RṘ.

Since typically (3/4)(R/R0)
2[1 − (R/R0)

2]−1/2 ∼ 1 the ratio is of order

|�γ |:P0h.

Since typically |�γ | = 0.01 N m−1 and h ≈ 10−7 m we get

105 N m−2:P0.

Now, if we consider a tyre on a wet rough road surface, the nominal pressure in the footprint
area is of order 0.5 MPa and, since the area of real contact may be only 5% of the nominal
contact area, the pressure in the asperity contact areas may be 10 MPa. This is about 100 times
higher than the contribution from the surface energy and we conclude that in most practical
applications the surface energy term gives a negligible contribution to the driving force for
squeeze-out. In this case, if the nucleation of the squeeze-out occurs in the centre of the contact
area (radius R0), (37) is replaced with(

2π |�γ |R +
3π

2
P0h R

(
R

R0

)2[
1 −

(
R

R0

)2]−1/2)
Ṙ ≈ η

(
v

H

)2

�V ,

or
t

τ
= 4

3

∫ R/R0

0
dr

r1/3

1 + κr2(1 − r2)−1/2
, (42)

where we introduced the dimensionless parameter

κ = 3

4

P0h

|�γ | . (43)

In figure 38 we show the radius R of the squeezed out region (in units of the radius of the
contact area R0) as a function of the squeeze-out time t (in the natural unit τ ) for several values
(κ = 0, 1, . . . , 9) of the dimensionless parameter κ . In the measurements of Brochard-Wyart
et al, κ ∼ 1 so that deviation from the prediction of the original theory, where the elastic
deformation contribution to the squeeze-out force was neglected, will only occur for R/R0

larger than ∼0.5. However, in many practical applications κ may be much larger, e.g., κ ∼ 100
in the context of a tyre on a wet road (see above), and it is then necessary to use the full theory
rather than the limiting formula (38).

When the long range nature of the interaction between the solid surfaces (which is usually
of the van der Waals nature) is taken into account, it is also possible for a thin intercalated
liquid film to dewet by amplification of long wavelength thickness modulations (‘spinodal
dewetting’) [71]. Theoretical studies have shown that ‘rubber spinodal dewetting’ is limited
to a range of thickness 20 Å < h < 200 Å. However, the study of spinodal dewetting
presented in [71] neglected the spatial variation of the squeezing pressure, and in the light of
the calculation presented in this paper for the squeeze dynamics, an extension of the theoretical
calculations to include the spatial variation of the squeeze pressure seems worthwhile.
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Figure 38. The radius R of the squeezed out region (in units of the radius of the contact area R0)
as a function of the squeeze-out time t (in the natural unit τ defined in the text). Results are shown
for several values (κ = 0, 1, . . . , 9) of the dimensionless parameter κ defined in the text.

4.8. Adhesion of a soft object on a wet substrate

The stability of intercalated liquid films is of crucial interest for many practical applications.
One example is the irreversible rupture of the lachrymal film, which has been observed with
silicon contact lenses: the elastomer adheres strongly to the cornea and can cause severe
damage when it is removed. In contrast, when driving on a wet road, we require the water
film to be squeezed away—in order to maximize grip—during the time (typically ∼5 ms) for
which a rubber tread block stays in the footprint area. In a similar way, a living cell which
comes to adhere on a substrate must eliminate the intercalated water film. The mechanism
behind this dewetting process was discussed in section 4.7. Here we present an illustration,
closely related to biological applications.

Brochard-Wyart et al [68] have studied the adhesion of giant vesicles of phospholipids to
a glass slide. Incubated with glucose solution containing CaCl2, Ca2+ adsorbs strongly to the
phosphatidylcholine head groups of the bilayer, thus conferring to the vesicles a net positive
charge. Therefore they are attracted to the negative surface of bare glass at neutral pH.

The free vesicles undergo thermally excited shape fluctuations (see figure 39(a)), because
they have zero surface tension (similarly to a closed plastic sack partly filled with water—the
sack can take infinitely many different configurations (with the restriction of constant volume)
without any cost of energy). When they adhere on the substrate, which requires the squeeze-out
of the intervening water film, they become stretched and spherical (see figure 39(b)). It is clear
that in biological applications similar processes may occur where the adhesion is influenced
by the local chemical composition of the surrounding fluid, which can be changed, e.g., by
transfer of ions into the fluid (via membrane bound ion pumps).

4.9. Adhesion in biological systems

Many cells (in fluids) are able to crawl on a solid substrate to which they adhere. This motion
involves, in general, three processes: the formation and protrusion of a thin lamellipod in
front of the cell, the adhesion of the lamellipod to the substrate and the retraction at the rear,
pulling the cell forward [73–77]. Thus, the main part of the cell body is not adhering to the
substrate, e.g., a glass substrate, but is probably separated from it by a thin fluid layer. This
part of the cell–substrate interface is therefore wetted by the fluid (mainly water), so that a
thin fluid film intercalates between the two surfaces. However, in order for the lamellipod
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Figure 39. Adhesion of giant vesicles. (a) Undulations by thermal fluctuation of a free vesicle.
The surface tension is zero and the surface is crumpled. (b) A tense spherical vesicle: a weak
adhesion absorbs excess surface and the membrane has a surface tension. (Adapted from [68].)

to adhere to the substrate, the lamellipod–substrate interface must not be wetted by the fluid.
Thus, the adhesive interaction between the lamellipod and the substrate results in a dewetting
transition where the fluid is expelled from the interface. For adhesion to many biological
surfaces, e.g., fibronectin, laminin or collagen, the cell utilizes integrins (special adhesion
molecules located in the cell membrane). But since adhesion has been observed for many
different non-biological substrates, e.g., silicone rubber or glass, there must be a non-specific
contribution to the adhesive interaction, e.g., involving polar interactions and the van der Waals
interaction. Thus perhaps the adhesion and dewetting transitions are initiated by changes in
the concentration of molecules with ionic groups in the cell membrane, or by pumping ions
between the cell and the external fluid via membrane bound ion pumps. Depending on the
sign of the charged groups on the cell and on the substrate, strong adhesion or repulsion can
be induced, similarly to the case of charged rubber surfaces discussed in section 3.3, or the
charged vesicle discussed in section 4.8. In fact, experiments have shown that transient increase
in intracellular calcium ions Ca2+ is involved in the locomotion of fish epithelial keratocytes,
and occurs more frequently in cells that become temporarily ‘stuck’ to the substratum, or are
subjected to mechanical stretching, and in detachment of the rear cell margin [78].

The exact nature of the dewetting and adhesion process is not well understood; nor is the
exact origin of how the cells can crawl on the substrate. In figure 40 we present an example
of a bacterium moving on a glass substrate at a speed ∼8 µm min−1. In this case the cell is
propelled by an actine gel filament produced at the rear end of the bacterium, i.e., by a different
(but related) mechanism to the one discussed above.

4.10. Droplet shape, contact angle and Laplace pressure

As a preparation for the following two sections, let us briefly review some basic physics
related to wetting and nonwetting liquids. If a small drop of a liquid is put on a substrate, the
droplet will in general have the form of a spherical cup (radius R) with a contact angle θ (see
figure 41(a)) determined by the famous Young equation:

γ cos θ = γsv − γsl

where γ = γlv, γsv and γsl are the liquid–vapour, solid–vapour and solid–liquid interfacial
energies (per unit area). This equation, and the fact that the droplet takes the form of a spherical
cup, both result from the minimization of the surface free energy, under the constraint that the
volume of the droplet is fixed. For a wetting liquid the contact angle θ = 0, so that a wetting
liquid droplet will spread out on the surface, forming a uniform thin film. Since most real
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Figure 40. To move within cell cytoplasm and spread from cell to cell through the cytoplasmic
membrane, the listeria bacterium induces the assembly of a tail, which is an actine gel made of
cross-linked filaments and which forms a tubular structure. (Adapted from [72].)

R

θ

liquid drop

0R

1R

F F
R0

R1

F F

(a) (b) (c)

Figure 41. (a) A liquid droplet on a flat substrate. The drop forms a spherical cup with the radius
of curvature R and the contact angle θ . (b) A liquid (nonwetting) drop squeezed between two solid
surfaces; in this case R0 and R1 are both positive. (c) A wetting liquid drop between two solid
walls. In this case R1 is negative and a finite pulling force is necessary in order to avoid the solids
being pulled together.

surfaces have defects, if a lateral force is applied to the droplet, e.g., by tilting the substrate
(gravitational force), the droplet will in general not move until a critical lateral force acts on
the droplet. Thus, the droplet is in general pinned to the substrate.

The pressure in the liquid drop in figure 41(a) is higher than the surrounding (e.g.,
atmospheric) pressure. This follows directly from the fact that the surface of the droplet
has a curvature. The pressure increase is given by the Laplace formula

P = Pext + 2
γ

R
,

where Pext is the external pressure. In a more general case the surface of the liquid is not
spherical, but is characterized by the radii of curvature (along the principal directions) R0 and
R1. In this case

P = Pext + γ

(
1

R0
+

1

R1

)
.

In this formula R0 and R1 are positive if the origin of the radius of curvature is inside the
liquid, and otherwise negative. Thus, in figure 41(b) R0 and R1 are both positive and a finite
squeezing force must be applied to the solid walls in order for the configuration shown in the
figure to be stable. In figure 41(c) R0 is positive but R1 is negative, and since 1/|R1| � 1/R0,
a finite pulling force must be applied to the solid walls in order for the configuration shown in
the figure to be stable.
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Figure 42. The nature of octane between two solid elastic walls, for three different cases
corresponding to nonwetting (cases (a) and (b)) and wetting (case (c)). The bead–wall atom
interaction energy parameter was (a) 1 meV, (b) 3 meV and (c) 18.6 meV.

4.11. Squeezing wetting and nonwetting fluids films

The influences of wetting and nonwetting liquids on adhesion are paradoxical. When
contacting solids are completely surrounded by a wetting liquid, the bond between the surfaces
will be broken, while a nonwetting liquid may strengthen the bond. However, when a small
amount (e.g., film a few molecular layers thick) of liquid occurs at the interface between the
solids, it may have the opposite effect (see below). This fact is often made use of in nature,
and in engineering applications. For example, some insects inject a very thin film of a wetting
liquid at the interface between the attachment organs and the (usually rough) substrate in order
to increase adhesion. On the other hand, in hair-care applications the hair fibres are covered
by a thin (monolayer) hydrophobic coating, which results in effective repulsion between semi-
wet (or moist) hair fibres; see section 4.12. Another well known example is the influence
of water on the adhesion between sand particles: because of surface roughness, the adhesion
between dry sand particles is usually very small. However, moist sand particles can adhere with
measurable strength, as utilized by children when building sandcastles (note: sand particles
usually have polar surfaces which are wetted by water). Finally, when sand is completely wet
(i.e., immersed in water) the adhesion is again usually very low.

In this section we study the squeezing of thin octane C8H18 films between elastic solid
walls, with different wetting properties in relation to octane [79]. The substrate is flat while
the ‘block’ has a cosine corrugation in the x-direction. The model is described in detail in
section 5. We have changed the energy of interaction between the octane bead units and the
solid walls, from a very small value (1 meV) corresponding to a nonwetting surface with a very
large contact angle (nearly 180◦; see figure 42(a)) to a high value (18.6 meV) corresponding
to complete wetting (see figure 42(c)).

Figure 43 shows the variation of the average pressure during squeezing, as the block
moves a distance of 24 Å toward the substrate, starting at the wall–wall separation shown in
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Figure 43. The variation of the average pressure during squeezing as the block moves a distance
of 24 Å toward the substrate. Octane C8H18 was used as the lubricant. The squeeze velocity was
vz = 2 m s−1. A symmetric pair of parameters ε1 = ε2 was used here equal to (a) 1 meV, (b)
3 meV, (c) 8 meV, (d) 12 meV and (e) 18.6 meV.

Figure 44. Snapshot pictures for the approach of a cosine corrugated block toward a flat substrate.
Parameters ε1 = 1 meV and ε2 = 1 meV were used here. The snapshot pictures correspond to
block displacements toward the substrate of 8, 16 and 24 Å.

figure 42(c). The squeeze velocity was vz = 2 m s−1. We used the same interaction energy
parameters for the octane bead units and the atoms of the two solid walls, ε1 = ε2, equal to (a)
1 meV, (b) 3 meV, (c) 8 meV, (d) 12 meV and (e) 18.6 meV. For the system exhibiting complete
wetting (zero contact angle), namely cases (c)–(e), n → n−1 (n = 3, 2, 1) layering transitions
are observed and these are indicated in the figure. For the nonwetting systems (cases (a) and
(b)) no layering transitions can be observed, and, in fact, no fluid occurs in the region between
the solid walls where the spacing is smallest. This is illustrated by the snapshot pictures shown
in figure 44 for case (a), at the separation corresponding to the vertical arrows in figure 43. In
contrast, for fluids which wet the solid walls, the fluid tends to accumulate in the region where
the wall–wall separation is smallest, forming a capillary bridge. This is illustrated in figure 45
for case (e). The snapshot pictures correspond again to the block displacements d = 8, 16 and
24 Å, as indicated by the vertical arrows in figure 43.
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Figure 45. Snapshot pictures for the approach of a cosine corrugated block toward a flat substrate.
Parameters ε1 = ε2 = 18.6 meV were used here. The snapshot pictures correspond to block
displacements toward the substrate of 8, 16 and 24 Å.

Figure 42(a) shows that an octane liquid drop, when the spacing between the solid walls
is large enough, forms a nearly spherical droplet in case (a). When the liquid is confined
between closely spaced solid walls, there is not enough space for the droplet to take this ideal
form. In order to minimize the surface energy the octane liquid is localized to the ‘large’ open
space between the solid walls. Since the surface energy of the liquid droplet decreases as the
separation between the solid walls increases (since the droplet can now take a more spherical
shape), the droplet will exert a repulsive force on the solid walls. Thus, as long as the direct
(attractive) wall–wall interaction can be neglected, the wall–wall interaction is repulsive. This
is illustrated in figure 46 (curve (a)) (a magnified section from figure 43), which shows the
average pressure acting on the block (or the substrate) as a function of the displacement of the
block toward the substrate. Curve (b) in the same figure shows the (average) pressure acting on
the block for the case of complete wetting, corresponding to case (e) in figure 43. In this case a
capillary bridge is formed between the sold walls (see figure 45) resulting in a negative pressure
acting on the block. Note that the magnitude of the negative pressure is about five times higher
than the positive pressure for the nonwetting case (∼−10 MPa as compared to ∼2 MPa). The
‘pressure peak’ observed for the wetting liquid at the distance ≈3 Å in figure 46(b) corresponds
to the n = 4 → 3 layering transition, and the strong increase in pressure around a distance
∼6 Å is due to the pressure build-up before the onset of the n = 3 → 2 layering transition, as
is clearly seen in figure 43.

From the discussion above it is clear that if a nonwetting liquid is squeezed between solid
walls with roughness (either geometrical or chemical), small liquid droplets may be trapped
at the interface (see figure 47(a)), resulting in a repulsive force between the walls during
squeezing, until the solid walls come into direct contact, where the wall–wall interaction may
be initially attractive. This effect is made use of in some practical applications, and we will
give one illustration below involving conditioners for hair-care application.

Figure 48 shows the variation of the average pressure during squeezing under the same
conditions as in figure 40, except that the bead–wall interaction is now asymmetric with ε1

equal to (a) 1 meV, (b) 3 meV, (c) 8 meV, (d) 12 meV and (e) 18.6 meV, and with ε2 = 18.6 meV
for all cases. In these cases, n → n − 1 (n = 3, 2, 1) layering transitions are observed for
all the systems. In figure 49 we show snapshot pictures for case (a) when the block has been
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Figure 46. The pressure acting on the walls for (a) a nonwetting liquid and (b) a wetting liquid.
For octane with ε1 = ε2 = 1 and 18.6 meV, respectively.
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Figure 47. (a) A nonwetting liquid trapped between two solid walls gives rise to an effective
repulsion between the walls. (b) Capillary bridges formed by a wetting liquid. In this case the
liquid gives rise to attraction between the walls.

displaced toward the substrate by 8, 16 and 24 Å. For this asymmetric pair of parameters,
nonwetting of the substrate surface and wetting of the block are clearly seen.
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Figure 48. The variation of the average pressure during squeezing as the block moves 24 Å toward
the substrate. For ε1 equal to (a) 1 meV, (b) 3 meV, (c) 8 meV, (d) 12 meV and (e) 18.6 meV and
ε2 = 18.6 meV for all cases.

Figure 49. Snapshot pictures for the approach of a cosine corrugated block toward a flat substrate.
Parameters ε1 = 1 meV and ε2 = 18.6 meV were used here. The snapshot pictures correspond to
block displacements toward the substrate of 8, 16 and 24 Å. For this asymmetric pair of parameters
nonwetting behaviour of lubricant at the surface of the substrate and wetting behaviour at the surface
of the block are clearly seen.

4.12. A hair-care application: conditioners and the combing of wet hair

The surfaces of clean hair fibres in water at a pH larger than ∼4 have negatively charged
groups [80]. Thus when the fibres are fully immersed in water one would expect repulsive
Coulomb forces to occur between the fibres, which tend to keep them separated from each
other, similarly to the case of a negatively charged rubber surface in contact with a (negatively
charged) glass surface, where a thin liquid layer can be trapped between the surfaces even at
squeezing pressures as high as ∼0.1 MPa. Thus, completely wet hair may be relatively easily
to comb. However, for semi-wet (or moist) hair, such as may result from drying the hair with
a towel, the situation is different: since the contact angle for water on the clean, negatively
charged, hair fibres is zero (complete wetting), capillary bridges will form in the contact areas
between the hair fibres; see figure 50(b). The pressure in the capillary bridges is much lower
than the surrounding atmospheric pressure, leading to strong effective adhesion between the
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Figure 50. The interaction between wet hair fibres. (a) Natural (uncoated) hair fibres are
hydrophilic, and coated by thin water films. (b) When two fibres come into contact, a liquid
bridge is formed leading to an effective attractive interaction between the fibres. In the absence of
external forces direct fibre–fibre contact will occur (not shown). (c) If the hair fibres are coated
by hydrophobic monolayer films (see figure 51), the water film will break up into small droplets
(dewetting transition) with nonzero contact angles to the hair fibres, determined by the interface
energies (Young’s law). In this case, in the absence of external forces, there is a finite natural
separation between two hair fibres (see (d)). (e) At separation shorter than the natural separation,
the fibres will repel each other.

- - - - - - - - - - - - - -
+ + + + + + + + + + + +++

hair fibre

Figure 51. Coulomb attraction between the negatively charged hair surface and the positively
charged head groups of the conditioner molecules causes head-down/tail-up adsorption at the
interface.
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Figure 52. A schematic picture of the central region of the squeezing model used in the present
review.

fibres. During combing of semi-dry hair, the liquid bridges will be elongated before they break,
leading to an effective long range and strong attraction between the fibres, resulting in very bad
combing properties. Conditioners for hair-care applications are used to reduce the combing
force. These fluids contain molecules with a long hydrocarbon chain, and a positively charged
head group, which bind strongly to the negatively charged groups on the hair fibres forming a
grafted monolayer film,with the inert hydrocarbon chains pointing into the water; see figure 51.
The coated hair fibres are hydrophobic with a large contact angle for water [80]. Thus, the
thin water film, which may be left on the hair fibres after drying the hair with a towel, will
immediately break up into small water droplets (dewetting transition). If no pinning by defects
were to occur the small droplets would tend to join together into larger droplets, but due to
surface defects on the hair fibres (e.g., small areas not covered by the hydrophobic monolayer
film), one may expect most of the droplets to remain pinned at different locations along the hair
fibres; see figure 50(c). When two hair fibres come into contact without an external squeezing
force, they will be separated by a small but finite distance determined by the (average) radius
of the water droplets and by the contact angle (figure 50(d)). If the fibres are squeezed toward
each other, the droplets will deform as indicated in figure 50(e). (We assume here that the
droplet positions are pinned so that they do not rotate or displace away from the region between
the hair fibres.) Since the pressure inside the droplets is much higher than the atmospheric
pressure, and since the area of contact between the droplet and the hair fibres increases during
squeezing, the droplets will exert a strong repulsive force between the hair fibres. Thus, in this
case the hair fibres tend to be separated from each other during combing, leading to very small
fibre–fibre adhesion and friction, and good combing properties. In addition, owing to the inert
nature of the monolayer film shown in figure 51, even in the absence of water the adhesion
and friction between the hair fibres is reduced for hair treated with a conditioner, as compared
to untreated hair.

5. Squeezing molecularly thin 2D solid-like films

The theory presented above is based on the assumption that the lubricant film is in a 2D fluid
state. This seems to be the case in the experiments discussed above. It may also be the case
for solid lubricant films during sliding. In this section we present results for lubrication films
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Figure 53. The (average) squeezing pressure as a function of the distance that the upper surface
of the block has moved toward the bottom surface of the substrate, where d = 0 corresponds
to an arbitrarily chosen point where the two surfaces with ∼4 monolayers of lubricant almost
make contact. (A), (B) and (C) correspond to three different cases, where the lubricant forms (A)
unpinned incommensurate, (B) pinned incommensurate and (C) strongly pinned commensurate
structures. In (B) and (C), results are shown for both (a) pure squeezing and (b) squeezing and
sliding. In all cases the squeezing and sliding velocities are of order a few metres per second.

which are in a 2D solid-like state. We again focus on the atomic processes by which the
thickness of the interface decreases in discontinuous steps, corresponding to the decrease in
the number n of lubricant layers.

For solid surfaces that approach without lateral sliding, separated by unpinned or weakly
pinned (incommensurate) lubrication layers, fast and complete layering transitions occur.
Commensurate or strongly pinned incommensurate layers lead to sluggish and incomplete
transitions, often leaving islands trapped in the contact region. As discussed above, trapped
islands have been observed experimentally for 2D liquid-like lubrication films. In this latter
case the island may result from dynamical instabilities of the boundary line caused by the non-
linearity of the equations of motion (see section 4.3). Similar instabilities may be the origin
of the trapped islands that we observe in the present case. However, when the lubrication film
is in a 2D solid-like state, plastic deformation must occur during squeeze-out in order to allow
different parts of the lubrication film to move with different velocities relative to the solid
surfaces.
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Figure 54. Snapshot pictures during squeeze-out. The time of each snapshot is indicated. Bottom:
snapshot pictures of the lubricant layer for times close to the point where the n = 2 → 1 squeeze-
out transition occurs. The first- and second-monolayer atoms are indicated with different shades
of grey. For model A at T = 300 K.

If strongly directional bonds occur between the lubrication atoms or molecules, squeeze-
out may also occur by brittle fracture. This may be the case for some solid lubricants, e.g., thin
graphite layers, but is unlikely to be the case for typical lubrication fluids (e.g., hydrocarbons);
in the latter case the interaction between the lubrication molecules is usually of the van der
Waals type, i.e., weak and undirectional,which favours local atomic rearrangements and plastic
flow. For commensurate layers we observe that it is nearly impossible to squeeze out the last
few layers simply by increasing the perpendicular pressure. However, the squeeze-out rate
is greatly enhanced by lateral sliding, since, in this case, the lubricant film can turn into a
fluidized or disordered state, facilitating the ejection of one layer.
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5.1. Atomic lubricants

We are concerned with the properties of a lubricant film squeezed between the curved surfaces
of two elastic solids. In our model, as well as in SFA experiments, a system of this type is
obtained by ‘gluing’ two elastic slabs (of thickness W1 and W2) to ‘rigid’ surface profiles of
arbitrary shape. If the radii of curvature of the rigid surfaces are large compared to W1 and W2,
the elastic slabs will deform, reproducing with their free surfaces the (nearly arbitrary) shape
of the underlying rigid profiles.

In what follows we denote the lower solid as the substrate, which is taken to be fixed
in space. The upper solid, denoted as the block, will be moving. To account for the elastic
response of the slabs, without dealing with the large number of atoms required to simulate a
mesoscopic elastic solid, we treat explicitly, at the atomistic level, only the last atomic layer
of the solids at the interface. These atoms are connected to a rigid curved surface (or profile).
The force constants connecting these atoms to the rigid profile, however, are not the bare
parameters, determined by the model interatomic potential. Instead, those force constants are
treated as effective parameters that implicitly re-introduce the elastic response of the slabs of
arbitrary widths W1 and W2.

The model is illustrated in figure 52 (see also [37, 47, 48]). The atoms in the bottom
layer of the block (open circles) form a simple square lattice with lattice constant a, and lateral
dimensions Lx = Nx a and L y = Nya. Periodic boundary conditions are assumed in the xy
plane.

We have performed simulations for the three different cases (A)–(C). In all cases the
lubricant is Xe, but we have varied the Xe–substrate lattice constant so that a monolayer film
of lubrication atoms forms unpinned (case (A)) or pinned (case (B)) incommensurate layers,
or a commensurate layer (case (C)).

(A) Incommensurate layer (unpinned). In the computer simulations, the block and the
substrate are initially separated by about four Xe monolayers. The pressure–displacement
curves exhibit ‘bumps’ corresponding to the layering transitions (with increasing pressure)
n → n − 1 (n = 4, 3, 2); see figure 53(A). We observe that these transitions are rather
abrupt, and are marked by a significant pressure drop. The latter implies that the squeeze-
out occurs so rapidly that, during the transition, the upper surface has moved (velocity
vz ≈ 1 m s−1) only a small fraction of the diameter of the Xe monolayer. We observe that
the layering transitions occur at higher pressures at low temperature, indicating that they
are thermally activated.
Inspection of snapshot pictures of the lubrication film during the nucleation of the squeeze-
out n = 2 → 1 shows that immediately before the nucleation of the layering transition
the lubrication film in the central region has undergone a phase transformation and now
exhibits fcc(100) layers parallel to the solid surfaces. Since the fcc(100) layers have a
lower concentration of Xe atoms than the hexagonal layers (assuming the same nearest
neighbour Xe–Xe distance), a fraction of the Xe–solid binding energy is lost during this
transformation. On the other hand the solid surfaces can now move closer to each other
(since the distance between the fcc(100) layers is smaller than that between the hexagonal
layers) and in this way elastic energy is released. After the phase transformation, the
layering transition n = 2 → 1 can occur much more easily since density fluctuations
(opening up of a ‘hole’) require less energy in the more dilute fcc(100) layers than in
the higher density hexagonal layers; see figure 54. The ‘hole’ in the lubrication film is
stabilized by the inward relaxation of the solid walls as indicated in the snapshot pictures
shown in figure 55.

(B) Incommensurate layer (pinned). We have studied squeeze-out both without (a) and with
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(b) lateral sliding. We find, in contrast to case (A), that in the present case, where the lateral
atomic corrugation experienced by the lubrication atoms is much higher, the squeeze-out
is more sluggish, and only very weak bumps corresponding to the n = 4 → 3 and 3 → 2
transitions can be detected in the pressure–displacement curve; see figure 53(B).

In case (a) it is found that at the end of squeezing, a trapped n = 2 island occurs,
surrounded by a single Xe monolayer. This is reminiscent of the trapped islands observed
experimentally for 2D liquid-like lubrication films. In this latter case the islands may
result from dynamical instabilities of the boundary line caused by the non-linearity of the
equations of motion. Similar instabilities may be the origin of the trapped island that we
observe in the present case. However, when the 2D lubrication film is in a solid-like state
plastic deformation must occur during squeeze-out in order to allow different parts of
the lubrication film to move with different velocity relative to the solid surfaces. During
squeezing and sliding the n = 2 → 1 transition is complete, i.e., no n = 2 island remains
trapped.

(C) Commensurate layer. The commensurate adsorbate layers are strongly pinned, and even
though the Xe–substrate binding energy in the present case is much smaller than for
case A, it is (if no lateral sliding occurs) difficult to squeeze out the lubrication film. Thus
at the end of the squeeze-out process (no sliding) the surfaces are still separated by four
Xe layers, just like at the beginning of squeeze-out (curve (a) in figure 53(C)). However,
lateral sliding tends to break up the pinning (e.g., fluidization of the adsorbate layer may
occur), and during sliding it is much easier to squeeze out the lubrication layer, and at the
end of squeeze-out only one Xe layer remains between the surfaces in the high pressure
region (curve (b) in figure 53(C)).

Crack-like squeeze-out. In some cases, at low temperature and at very high confining pressure,
we have observed that the squeeze-out occurs in a sequence of very fast events similar to brittle
fracture. As an example, the t = 0 snapshot picture (from the central region of the contact
area) in figure 56 shows a trapped Xe bilayer during squeezing of Xe lubricant between two
curved surfaces with a similar elastic modulus to steel. The picture is from the top of the
block, and for clarity we do not show the block and substrate atoms. At the periphery of
the contact area the Xe atoms form hexagonal layers: this maximizes the binding energy of
Xe within the layer. However, in the central part of the contact region the Xe atoms form
(relative to the block surface) a 1 × 1 domain wall superstructure, where the domain walls
have a lower concentration of Xe atoms than in the perfect 1 × 1 structure. The origin of
this phase transformation from hexagonal layers in the low pressure region to the domain wall
superstructure is the latter structure allowing the solid walls to come closer to each other by a
small distance which gives rise to a lowering of the total energy since the elastic energy stored
in the walls is reduced.

The Xe atoms form commensurate 1 × 1 regions separated by low density domain walls.
In the present case the squeeze-out occurs stepwise in a series of fast events. The first event
involves the formation of a small ‘hole’ in the region of a low density domain wall as indicated
by the t = 2 snapshot in figure 56. This hole remains for a short time period after which a
rapid squeeze event occurs along a low density domain wall as illustrated in snapshot pictures
t = 26 and 28 in figure 56. This event is very similar to a crack propagating along a grain
boundary in a solid and may have a similar physical origin, involving stress concentration at
the crack tip.
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Figure 55. Snapshot pictures, at an inclined view angle, of the central region of the system at three
time points immediately after the n = 2 → 1 squeeze-out transition has nucleated. For model (A)
and temperature T = 300 K.

5.2. Linear hydrocarbons

The properties of alkane lubricants confined between two approaching solids have been
investigated using the same model as above (see figure 52) [81] (see also [82]). We consider
linear alkane molecules of different chain lengths, C3H8, C4H10, C8H18, C9H20, C10H22, C12H26

and C14H30, confined between smooth gold surfaces. We observe that well defined molecular
layers develop in the lubricant film when the width of the film is of the order of a few atomic
diameters. An external squeezing pressure induces discontinuous changes in the number n
of lubricant layers. We find that with increasing alkane chain length, the transition from n to
n − 1 layers occurs at higher pressure, as expected on the basis of the increasing wettability
with increasing chain length.

We now describe the results obtained from the simulations for seven different linear alkane
species as lubricants, starting from thermal equilibrium at the temperature T = 300 K at a
point where the block and the substrate are separated by four monolayers of lubricant. The
total squeezing distance is about 20 Å depending on the system considered.
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Figure 56. Snapshot pictures during the squeeze-out of Xe from the interface between two curved
elastic solids.

Figure 57. A snapshot picture during squeezing with decane as the lubricant. The squeezing
velocity is 1 m s−1. The block has moved a distance of 3 Å resulting in a film of decane four
monolayers thick between the surfaces.

In order to illustrate the squeezing systems, decane (C10H22) was chosen as an example
in figure 57. In this figure the arrow shows the squeezing movement of the block toward the
substrate. It can be observed that the surfaces are separated by four monolayers of decane in
the central region at a point where the block has moved a distance of 3 Å.

Figure 58 shows the average pressure during squeezing as a function of the distance
moved by the block. Of the seven systems investigated, only propane, octane and tetradecane
are shown, for clarity. Each jump in the pressure curves corresponds to a layering transition
indicated by n → n − 1 in the figure. At about 20 Å displacement no lubricant is left between
the surfaces and further movement of the block would only result in a monotonic increase in
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Figure 58. The variation of the average pressure during squeezing developed as the block moves
a distance of 20 Å toward the substrate. The n → n − 1 layering transitions are shown for three
systems: propane, octane and tetradecane.
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Figure 59. The variation of the squeeze-out average pressure during squeezing as a function of the
length of the alkanes. The figure includes all the alkanes investigated. The straight lines are linear
interpolation curves for the pressure at which the n → n − 1 layering transition occurs.

pressure. In figure 59 we show the pressure for initiating the layering transitions for all seven
alkanes. Linear regression analysis is performed for each layering transition, and the resulting
lines are also plotted in the figure.

We now address the question of why the long chain alkanes are better boundary lubricants
than the short chain ones. We first study the lubricant film in the middle of the contact between
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Figure 60. The central part of the contact between the block and the substrate. In (a) the whole
system is shown whereas in (b) the surface atoms have been removed and the section displayed in
figure 61 is also shown. The width is the same as the width of the contact (75.9 Å) whereas the
length is 20 Å, which is 10 Å on either side of the middle of the contact.

Figure 61. Central sections of the block–substrate contacts (see figure 60), with only the lubricant
molecules shown. The alkane lubricants in this figure are propane, octane and tetradecane.

the block and the substrate. This is done at a point where all the systems have one layer left
between the surfaces and where they are at almost the same average pressure.

The central sections of three systems, propane, octane and tetradecane, are shown in
figure 61. From simple visual inspection of this figure, it is obvious that the density of bead
units in contact with the walls increases with increasing length of the alkanes; we will now
show that this results in a higher squeeze-out pressure for the long chain alkanes.
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Figure 62. The wear scar diameter as a function of the molecule length for a number of linear
alkanes. Results (a) are from [83] and (b) from [84]. The inset shows ball-on-disc configuration
of a lubricity test.

Since the van der Waals lubricant–wall binding energy is roughly proportional to the
number of bead units in contact with the wall, it follows that the hydrocarbon–wall binding
energy per unit area increases with increasing chain length. At the same time the cohesive
energy in the hydrocarbon liquid also increases, but at a lower rate than the hydrocarbon–
wall binding energy, since the latter is usually much stronger than the binding between
the hydrocarbon molecules. This is a consequence of the fact that most metals have much
higher electron concentration than hydrocarbon liquids, and also more low energy electronic
excitations; both effects result in a stronger van der Waals interaction energy. Thus, as the
hydrocarbon chain length increases, the coefficients a and b in equation (8) will both increase,
resulting (for fixed c, i.e., for fixed applied pressure) in a higher activation barrier for squeeze-
out. Hence, the pressure necessary in order to nucleate the layering transition n = 1 → 0 will
increase with increasing chain length, in agreement with our MD computer simulations.

6. Relation between squeeze-out and wear

Experiments have shown that a single-monolayer lubrication film between two solid surfaces
can protect against wear. We have already seen an example of this above where mica surfaces
with grafted alcohol molecules can slide with low friction and without any wear. In this section
we present the results of two different experiments which illustrate how wear occurs when the
last lubrication monolayer has been squeezed out.

Steel lubricated by linear hydrocarbons

A standard laboratory wear test is based on a ball-on-disc configuration as shown in the inset
in figure 62. A steel ball oscillates on a lubricated steel disc, and the wear scar diameter on
the ball is measured after a fixed number of oscillations.

Figure 62 shows wear results for surfaces lubricated by linear hydrocarbons. Trace (a)
gives the wear scar diameters as a function of the number of carbon atoms in the molecules [83].
Trace (b) in figure 62 results from another recent experimental study [84]. The amounts of
wear in the two experimental studies are different due to differences in the test conditions, but
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in both cases the wear scar diameter decreases with increasing alkane length. The volume of
steel worn off the ball is proportional to the wear scar diameter to the power four. Since the
ratio of the wear scar diameters, when going from propane (3 carbon atoms) to hexadecane
(16 carbon atoms) (see figure 62(b)), equals about 2, about 16 times more steel volume has
been worn off in the former case.

We have shown in section 4.1 that the layering transition n → n − 1 starts by a thermal
fluctuation opening up a small ‘hole’ in the lubrication film as indicated in figure 13(a) for the
n = 1 → 0 transition. For a wetting liquid (as in the present case with hydrocarbons on metals
or on metal oxides) the formation of a hole costs wall–lubricant binding energy and also line
energy as a result of unsaturated bonds of the lubricant molecules toward the interior of the
‘hole’, and this results in an activation barrier �E to forming the ‘critical’ hole.

Now, the crucial observation is that the binding distance between the carbon atoms within
the hydrocarbonchains (rC−C ≈ 1.5 Å) is much shorter than the van der Waals binding distance
between the CH2 or CH3 bead units on different hydrocarbonchains, which is of order r ≈ 4 Å.
This implies, as already discussed in section 5.2, that as the hydrocarbon chain length increases,
the number of bead units in direct contact with the solid walls will increase. Since the van
der Waals lubricant–wall binding energy is roughly proportional to the number of bead units
in contact with the wall, it follows that the hydrocarbon–wall binding energy per unit area
increases with increasing chain length. Thus, as the hydrocarbon chain length increases, the
activation barrier for squeeze-out will increase. Hence, the pressure necessary in order to
nucleate the layering transition n = 1 → 0 will increase with increasing chain length. Thus,
long chain hydrocarbons are usually better boundary lubricants than short chain hydrocarbons,
not only because of the increased viscosity which tends to increase the lubricant film thickness,
but also because the squeeze-out of the last few monolayers (for which the viscosity is irrelevant
and not even well defined), will, as described above, occur at higher pressure because of the
better wetting (high spreading pressure) properties of the long chain hydrocarbons.

Recent wear testing [84] also included branched lubricant molecules. The linear butane
and the branched iso-butane have about the same viscosity, but gave significantly different
wear scar diameters, corresponding to nearly two times higher wear volume for iso-butane.
This supports our relation between the wear volume and the hydrocarbon chain length, rather
than the viscosity, and indicates that the surface density of lubricant atoms can be altered
by changing the molecule structure. Furthermore, computer simulations have shown that
molecularly thin layers of branched hydrocarbons give rise to more disordered structures than
linear chains [85, 86], and that the pressure for nucleating squeeze-out decreases when disorder
occurs in the lubricant film [37].

Lubricated mica surfaces

Sliding friction experiments (using the SFA) have been performed with molecularly smooth
mica surfaces lubricated by different types of liquid. It was observed that as long as the
surfaces are separated by one monolayer or more of the lubrication molecules, sliding occurs
without wear [87, 88]. However, when the last lubricant monolayer has been squeezed out,
wear rapidly develops. The damage which occurs during sliding is first seen as a small, highly
localized, defect, and electron micrographs of the damaged region shows that a small mica
flake protrudes from one of the surfaces. Damage usually occurs initially somewhere within
the contact zone, but sometimes it starts at the periphery.

Once damage occurs, it propagates rapidly throughout the contact zone. Within seconds,
and well before the sliding surfaces have traversed one full contact diameter (which is of
order 100 µm), the surfaces are separated by a 100–1000 Å gap of wear debris (mica flakes).
This scenario only applies to certain types of brittle or layered material. Thus, preliminary
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experiments with silica surfaces, which are much more ductile, indicate a totally different mode
of wear. It is clear that more detailed SFA studies of wear, using different solid materials, may
lead to a much better understanding of the origin of wear.

7. Outlook

The study of the dynamics of squeeze-out of molecularly thin lubrication films between solid
walls has made dramatic progress during the last few years. Thus both the nucleation and the
spreading of squeeze-out are now relatively well understood for smooth surfaces. However,
most surfaces of practical importance are rough with roughness on many different length
scales. The detailed influence of roughness on the squeeze-out is not well understood. It is
known from computer simulations that lubrication films trapped between surfaces with even
a relatively small atomic roughness are much more disordered (fluid-like) than for the same
lubricant between smooth surfaces, and the squeeze-out occurs in a more continuous manner.
However, more detailed studies are necessary in order to gain insight into this important
problem. Similarly, very little is known about the dewetting at soft interfaces when (at least)
one of the walls has roughness on many different length scales. This problem may be of very
high practical importance, e.g., in the context of squeeze-out of water film at the tyre–road
interface or between wiper blades and glass windows.

The influence of liquids on adhesion is another problem of great importance. Thus, for
example, it is known that lizards can run on wet stone walls. The adhesion between the lizard
toe and a dry stone wall is now known to be due to the van der Waals interaction between thin
‘hair’ on the lizard toe and the stone surface, which is possible only if the hair makes atomic
contact with the stone surface. The same mechanism seems to operate on a wet stone wall
which requires that the water layer is removed from the contact areas between the hair and the
stone wall. Exactly how this squeeze-out occurs is not known today.

In most engineering applications involving moving bodies in contact, a fluid (lubricant)
is used to reduce the friction and wear. A deep understanding of how wear is related to the
squeeze-out is not yet reached, although we have shown above how wear may be related to the
wetting properties of the lubricant fluid in some cases (see section 6). Lubrication is particularly
demanding in microelectromechanical systems (MEMS) and in magnetic storage systems. In
these devices the solid surfaces are usually lubricated by liquid or grafted monolayer films; if
the monolayer films are squeezed out from the sliding interfaces huge wear and device failure
would occur within a short time period. In addition, in MEMS devices the lubricant film
also reduces the adhesion, e.g., by protecting against the formation of (water) capillary bridges
(which, if formed, would increase the effective adhesion to such an extent that the surfaces could
become immobile leading to catastrophic device failure) by forming a hydrophobic coating of
the surfaces. It is clear that a fundamental understanding of the squeeze-out dynamics of thin
trapped (liquid-like or solid-like) lubrication films is central to a large number of ‘high tech’
engineering applications. In addition, we hope to have shown in this review article that the
topic is of great scientific interest involving beautiful physics, and that much work still needs
to be done before a complete understanding can be reached.
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